Проектирование систем газового пожаротушения достаточно сложный интеллектуальный процесс, результатом которого становится работоспособная система, позволяющая надежно, своевременно и эффективно защитить объект от возгорания. В данной статье рассматриваются и анализируются проблемы, возникающие при проектировании автоматических установок газового пожаротушения. Оцениваются возмож ности данных систем и их эффективность, а также рассмат риваются возможные варианты оптимального построения автоматических систем газового пожаротушения. Анализ данных систем производится в полном соответствии с тре бованиями свода правил СП 5.13130.2009 и других норм, дейст вующих СНиП, НПБ, ГОСТ и Федеральных законов и приказов РФ по автоматическим установкам пожаротушения.

Главный инженер проекта ООО «АСПТ Спецавтоматика»

В.П. Соколов

На сегодняшний день, одним из самых эффективных средств тушения пожаров, в помещениях подлежащих защите автоматическими установками пожаротушения АУПТ в соответствии с требованиями СП 5.13130.2009 приложение «А», являются установки автоматического газового пожаротушения. Тип автоматической установки тушения, способ тушения, вид огнетушащих средств, тип оборудования установок пожарной автоматики определяется организацией-проектировщиком в зависимости от технологических, конструктивных и объемно-планировочных особенностей защищаемых зданий и помещений с учетом требований данного перечня (см. п. А.3.).

Применение систем, где огнетушащее вещество при возгорании автоматически или дистанционно в ручном режиме пуска подается в защищаемое помещение особенно оправданно при защите дорогостоящего оборудования, архивных материалов или ценностей. Установки автоматического пожаротушения позволяют ликвидировать на ранней стадии возгорание твердых, жидких и газообразных веществ, а также электрооборудования под напряжением. Такой способ тушения может быть объемным - при создании огнетушащей концентрации по всему объему защищаемого помещения или локальным – в случае, если огнетушащая концентрация создается вокруг защищаемого устройства (например, отдельного агрегата или единицы технологического оборудования).

При выборе оптимального варианта управления автоматическими установками пожаротушения и выборе огнетушащего вещества, как правило, руководствуются нормами, техническими требованиями, особенностями и функциональными возможностями защищаемых объектов. Газовые огнетушащие вещества при правильном подборе практически не причиняют ущерба защищаемому объекту, находящемуся в нем оборудованию с любым производственным и техническим назначением, а также здоровью работающего в защищаемых помещениях персоналу с постоянным пребыванием. Уникальная способность газа проникать через щели в самые недоступные места и эффективно воздействовать на очаг возгорания получило самое широкое распространение в использовании газовых огнетушащих веществ в автоматических установках газового пожаротушения во всех областях человеческой деятельности.

Именно поэтому автоматические установки газового пожаротушения используются для защиты: центров обработки данных (ЦОД), серверных, телефонных узлов связи, архивов, библиотек, музейных запасников, денежных хранилищ банков и т.д.

Рассмотрим разновидности огнетушащих веществ наиболее часто используемых в автоматических системах газового пожаротушения:

Хладон 125 (C 2 F 5 H) нормативная объемная огнетушащая концентрация по Н-гептан ГОСТ 25823 равна - 9.8 % объема (фирменное название HFC-125);

Хладон 227еа (C3F7H) нормативная объемная огнетушащая концентрация по Н-гептан ГОСТ 25823 равна - 7.2 % объема (фирменное название FM-200);

Хладон 318Ц (C 4 F 8) нормативная объемная огнетушащая концентрация по Н-гептан ГОСТ 25823 равна - 7.8 % объема (фирменное название HFC-318C);

Хладон ФК-5-1-12 (CF 3 CF 2 C(O)CF(CF 3) 2) нормативная объемная огнетушащая концентрация по Н-гептан ГОСТ 25823 равна - 4.2 % объема (фирменное название Novec 1230);

Двуокись углерода (СО 2) нормативная объемная огнетушащая концентрация по Н-гептан ГОСТ 25823 равна - 34.9 % объема (можно использовать без постоянного пребывания людей в защищаемом помещении).

Мы не будем производить анализ свойств газов и их принципы воздействия на огонь в очаге пожара. Нашей задачей будет являться практическое использование данных газов в автоматических установках газового пожаротушения, идеология построения данных систем в процессе проектирования, вопросы расчета массы газа для обеспечения нормативной концентрации в объеме защищаемого помещения и определения диаметров труб питающего и распределительного трубопровода, а также расчет площади выпускных отверстий насадка.

В проектах по газовому пожаротушению при заполнении штампа чертежа, на титульных листах и в пояснительной записке мы используем термин автоматическая установка газового пожаротушения. На самом деле данный термин не совсем корректен и правильней будет использование термина автоматизированная установка газового пожаротушения.

Почему так! Смотрим перечень терминов в СП 5.13130.2009.

3. Термины и определения.

3.1 Автоматический пуск установки пожаротушения : пуск установки от ее технических средств без участия человека.

3.2 Автоматическая установка пожаротушения (АУП) : установка пожаротушения, автоматически срабатывающая при превышении контролируемым фактором (факторами) пожара установленных пороговых значений в защищаемой зоне.

В теории автоматического управления и регулирования есть разделение терминов автоматическое управление и автоматизированное управление.

Автоматические системы - это комплекс программных и технических средств и устройств работающих без участия человека. Автоматическая система не обязательно должна представлять собой сложный комплекс устройств, для управления инженерными системами и технологическими процессами. Это может быть одно автоматическое устройство, выполняющее заданные функции по заранее заданной программе без участия человека.

Автоматизированные системы – это комплекс устройств, преобразующих информацию в сигналы и передающих эти сигналы на расстояние по каналу связи для измерения, сигнализации и управления без участия человека или с его участием не более чем на одной стороне передачи. Автоматизированные системы это комбинация двух систем управления автоматической и системы ручного (дистанционного) управления.

Рассмотрим состав автоматических и автоматизированных систем управления активной противопожарной защиты:

Средства для получения информации-устройства сбора информации .

Средства для передачи информации-линии (каналы) связи .

Средства для приема, обработки информации и выдачи управляющих сигналов нижнего уровня- локальные приемные электротехнические устройства, приборы и станции контроля и управления.

Средства для использования информации- автоматические регуляторы и исполнительные механизмы и устройства оповещения разного назначения .

Средства отображения и обработки информации, а также автоматизированного управления верхнего уровня – центральный пульт управления или автоматизированное рабочее место оператора .

Автоматическая установка газового пожаротушения АУГПТ включает в себя три режима запуска:

  • автоматический (запуск осуществляется от автоматических пожарных извещателей);
  • дистанционный (запуск осуществляется от ручного пожарного извещателя находящегося у двери в защищаемое помещение или поста охраны);
  • местный (от механического устройства ручного пуска находящегося на пусковом модуле «баллоне» с огнетушащим веществом или рядом с модулем пожаротушения для жидкой двуокиси углерода МПЖУ конструктивно выполненной в виде изотермической емкости).

Дистанционный и местный режим пуска выполняются только при вмешательстве человека. Значит правильной расшифровкой АУГПТ, будет являться термин «Автоматизированная установка газового пожаротушения» .

В последнее время Заказчик при согласовании и утверждении проекта по газовому пожаротушению в работу требует, чтобы указывалась инерционность установки пожаротушения, а не просто расчетное время задержки выпуска газа для эвакуации персонала из защищаемого помещения.

3.34 Инерционность установки пожаротушения : время с момента достижения контролируемым фактором пожара порога срабатывания чувствительного элемента пожарного извещателя, спринклерного оросителя либо побудительного устройства до начала подачи огнетушащего вещества в защищаемую зону.

Примечание - Для установок пожаротушения, в которых предусмотрена задержка времени на выпуск огнетушащего вещества с целью безопасной эвакуации людей из защищаемого помещения и (или) для управления технологическим оборудованием, это время входит в инерционность АУП.

8.7 Временные характеристики (см. СП 5.13130.2009).

8.7.1 Установка должна обеспечивать задержку выпуска ГОТВ в защищаемое помещение при автоматическом и дистанционном пуске на время, необходимое для эвакуации из помещения людей, отключение вентиляции (кондиционирования и т. п.), закрытие заслонок (противопожарных клапанов и т. д.), но не менее 10 сек. от момента включения в помещении устройств оповещения об эвакуации.

8.7.2 Установка должна обеспечивать инерционность (время срабатывания без учета времени задержки выпуска ГОТВ) не более 15 сек.

Время задержки выпуска газового огнетушащего вещества (ГОТВ) в защищаемое помещение задается путем программирования алгоритма работы станции управляющей газовым пожаротушением. Время необходимое для эвакуации людей из помещения определяется путем расчета по специальной методике. Временной интервал задержек для эвакуации людей из защищаемого помещения может составлять, от 10 сек. до 1 мин. и более. Время задержки выпуска газа зависит от габаритов защищаемого помещения, от сложности протекания в нем технологических процессов, функциональной особенности установленного оборудования и технического назначения, как отдельных помещений, так и промышленных объектов.

Вторая часть инерционной задержки установки газового пожаротушения по времени является продуктом гидравлического расчета питающего и распределительного трубопровода с насадками. Чем длинней и сложней магистральный трубопровод до насадка, тем большее значение имеет инерционность установки газового пожаротушения. На самом деле по сравнению с задержкой времени, которая необходима на эвакуацию людей из защищаемого помещения, эта величина не столь большая.

Время инерционности установки (начало истечения газа через первый насадок после открытия запорных клапанов) составляет, min 0,14 сек. и max. 1,2 сек. Данный результат получен из анализа около сотни гидравлических расчетов разной сложности и с разными составами газов, как хладонами, так и углекислотой находящейся в баллонах (модулях).

Таким образом, термин «Инерционность установки газового пожаротушения» складывается из двух составляющих:

Времени задержки выпуска газа для безопасной эвакуации людей из помещения;

Времени технологической инерционности работы самой установки при выпуске ГОТВ.

Необходимо отдельно рассмотреть инерционность установки газового пожаротушения с двуокисью углерода на базе резервуара изотермического пожарного МПЖУ «Вулкан» с разными объемами используемого сосуда. Конструктивно унифицированный ряд образуют сосуды вместимостью 3; 5; 10; 16; 25; 28; 30м3 на рабочее давление 2,2МПа и 3,3МПа. Для комплектации данных сосудов запорно-пусковыми устройствами (ЗПУ) в зависимости от объема, используется три вида запорных клапанов с диаметрами условного прохода выходного отверстия 100, 150 и 200мм. В качестве исполнительного механизма в запорно-пусковом устройстве используются шаровой кран или дисковый затвор. В качестве привода используется пневмопривод с рабочим давлением на поршне 8-10 атмосфер.

В отличие от модульных установок, где электрический пуск головного запорно-пуско-вого устройства осуществляется практически мгновенно даже с последующим пневматическим запуском оставшихся модулей в батарее (см. Рис-1), дисковый затвор или шаровой кран открываются и закрываются с небольшой задержкой во времени, которая может составлять 1-3 сек. в зависимости от выпускаемого производителем оборудования. К тому же открытие и закрытие данного оборудования ЗПУ во времени из-за конструктивных особенностей запорных клапанов имеет далеко не линейную зависимость (см. Рис-2).

На рисунке (Рис-1 и Рис-2) представлен график, на котором по одной оси значения среднего расхода двуокиси углерода, а по другой оси значения времени. Площадь под кривой в пределах нормативного времени определяет расчетное количество двуокиси углерода.

Средний расход двуокиси углерода Q m , кг/с, определяется по формуле

где: m - расчетное количество двуокиси углерода («Мг» по СП 5.13130.2009), кг;

t - нормативное время подачи двуокиси углерода, с.

с углекислотой модульного типа.

Рис-1.

1-

t o - время открытия запорно-пускового устройства (ЗПУ).

t x время окончания истечения газа СО2 через ЗПУ.

Автоматизированная установка газового пожаротушения

с углекислотой на базе изотермической емкости МПЖУ «Вулкан».


Рис-2.

1- кривая, определяющая расход двуокиси углерода по времени через ЗПУ.

Хранение основного и резервного запаса углекислого газа в изотермических емкостях может осуществляться в двух разных отдельно стоящих резервуарах или совместно в одном. Во втором случае возникает необходимость закрытия запорно-пускового устройства после выхода основного запаса из изотермической емкости во время чрезвычайной ситуации тушения пожара в защищаемом помещении. Этот процесс в качестве примера показан на рисунке (см. Рис-2).

Использование изотермической емкости МПЖУ «Вулкан» в качестве централизованной станции пожаротушения на несколько направлений, подразумевает использование запорно-пускового устройства (ЗПУ) с функцией открыть-закрыть для отсечки нужного (расчетного) количества огнетушащего вещества для каждого направления газового пожаротушения.

Наличие большой распределительной сети трубопровода газового пожаротушения не означает, что истечение газа из насадка не начнется раньше, чем полностью откроется ЗПУ, поэтому время открытия выпускного клапана нельзя включать в технологическую инерционность работы установки при выпуске ГОТВ.

Большое количество автоматизированных установок газового пожаротушения используется на предприятиях с разными техническими производствами для защиты технологического оборудования и установок как, с нормальными температурами эксплуатации, так и с высоким уровнем рабочих температур на рабочих поверхностях агрегатов, например:

Газоперекачивающие агрегаты компрессорных станций, подразделяющие по типу

приводного двигателя на газотурбинные, газомоторные и электрические;

Компрессорные станции высокого давления с приводом от электродвигателя;

Генераторные установки с газотурбинными, газомоторными и дизельными

приводами;

Производственное технологическое оборудование по компримированию и

подготовке газа и конденсата на нефтегазоконденсатных месторождениях и т.д.

Скажем, рабочая поверхность кожухов газотурбинного привода для электрического генератора в определенных ситуациях может достигать достаточно высоких температур нагрева, превышающих температуру самовоспламенения некоторых веществ. При возникновении чрезвычайной ситуации, пожара, на данном технологическом оборудовании и дальнейшей ликвидации данного возгорания с помощью системы автоматического газового пожаротушения, всегда есть вероятность рецидива, возникновения повторного возгорания при соприкосновении горячих поверхностей с природным газом или турбинным маслом, который используется в системах смазки.

Для оборудования, где имеются горячие рабочие поверхности в 1986г. ВНИИПО МВД СССР для Министерства газовой промышленности СССР был разработан документ «Противопожарная защита газоперекачивающих агрегатов компрессорных станций магистральных газопроводов» (Обобщенные рекомендации). Где предлагается применять для тушения таких объектов индивидуальные и комбинированные установки пожаротушения. Комбинированные установки пожаротушения подразумевают две очереди ввода в действие огнетушащих веществ. Перечень комбинаций огнетушащих веществ имеются в обобщенной методичке. В данной статье мы рассматриваем только комбинированные установки газового пожаротушения «газ плюс газ». Первая очередь газового пожаротушения объекта соответствует нормам и требованиям СП 5.13130.2009, а вторая очередь (дотушивание) ликвидирует возможность повторного возгорания. Методика расчета массы газа для второй очереди подробно дана в обобщенных рекомендациях смотри раздел «Автоматические установки газового пожаротушения».

Для пуска системы газового пожаротушения первой очереди в технических установках без присутствия людей инерционность установки газового пожаротушения (задержка пуска газа) должна соответствовать времени необходимого на остановку работы технических средств и отключение оборудования воздушного охлаждения. Задержка предусматривается в целях предотвращения уноса газового огнетушащего вещества.

Для системы газового пожаротушения второй очереди рекомендуется пассивный метод предотвращения рецидива повторного возгорания. Пассивный метод подразумевает инертизацию защищаемого помещения в течение времени, достаточного для естественного охлаждения нагретого оборудования. Время подачи огнетушащего вещества в защищаемую зону расчетное и в зависимости от технологического оборудования может составлять 15-20 минут и более. Работа второй очереди системы газового пожаротушения осуществляется в режиме поддержания заданной огнетушащей концентрации. Вторая очередь газового пожаротушения включается сразу же по окончании работы первой очереди. Первая и вторая очередь газового пожаротушения для подачи огнетушащего вещества должны иметь свои отдельные трубные разводки и отдельный гидравлический расчет распределительного трубопровода с насадками. Интервалы времени, между которыми осуществляется вскрытие баллонов второй очереди пожаротушения и запас огнетушащего вещества определяется расчетами.

Как правило, для тушения выше описанного оборудования используется углекислота СО 2 , но могут использоваться и хладоны 125, 227еа и другие. Все определяется ценностью защищаемого оборудования, требованиям по воздействию выбранного огнетушащего вещества (газа) на оборудование, а также эффективностью при тушении. Данный вопрос лежит полностью в компетенции специалистов занимающих проектированием систем газового пожаротушения в данной области.

Схема управления автоматикой такой автоматизированной комбинированной установки газового пожаротушения достаточно сложна и требует от управляющей станции очень гибкой логики работы по контролю и управлению. Необходимо тщательно подходить к выбору электротехнического оборудования, то есть к приборам управления газовым пожаротушением.

Теперь нам необходимо рассмотреть общие вопросы по размещению и монтажу оборудования газового пожаротушения.

8.9 Трубопроводы (см. СП 5.13130.2009).

8.9.8 Система распределительных трубопроводов, как правило, должна быть симметричной.

8.9.9 Внутренний объем трубопроводов не должен превышать 80% объема жидкой фазы расчетного количества ГОТВ при температуре 20°С.

8.11 Насадки (см. СП 5.13130.2009).

8.11.2 Насадки должны размещаться в защищаемом помещении с учетом его геометрии и обеспечивать распределение ГОТВ по всему объему помещения с концентрацией не ниже нормативной.

8.11.4 Разница расходов ГОТВ между двумя крайними насадками на одном распределительном трубопроводе не должна превышать 20%.

8.11.6 В одном помещении (защищаемом объеме) должны применяться насадки только одного типоразмера.

3. Термины и определения (см. СП 5.13130.2009).

3.78 Распределительный трубопровод : трубопровод, на котором смонтированы оросители, распылители или насадки.

3.11 Ветвь распределительного трубопровода : участок рядка распределительного трубопровода, расположенного с одной стороны питающего трубопровода.

3.87 Рядок распределительного трубопровода : совокупность двух ветвей распределительного трубопровода, расположенных по одной линии с двух сторон питающего трубопровода.

Все чаще при согласовании проектной документации по газовому пожаротушению приходиться сталкиваться с разным толкованием некоторых терминов и определений. Особенно если аксонометрическую схему разводки трубопроводов для гидравлических расчетов присылает сам Заказчик. Во многих организация системами газового пожаротушения и водяным пожаротушением занимаются одни те же специалисты. Рассмотрим две схемы разводки труб газового пожаротушения см. Рис-3 и Рис-4. Схема типа “гребенка” в основном применяется в системах водяного пожаротушении. Обе схемы, показанные на рисунках, применяются и в системе газового пожаротушения. Существует только ограничение для схемы типа “гребенка” ее можно использовать только для тушения двуокисью углерода (углекислотой). Нормативное время выхода углекислоты в защищаемое помещение составляет не более 60 сек., причем не важно это модульная или централизованная установка газового пожаротушения.

Время заполнения углекислотой всего трубопровода в зависимости от его длины и диаметров туб может составлять 2-4 сек., а далее вся система трубопровода до распределительных трубопроводов, на которых находятся насадки, превращается, как и в системе, водяного пожаротушении в “питающий трубопровод”. При соблюдении всех правил гидравлического расчета и правильного подбора внутренних диаметров труб будет выполняться требование, в котором разница расходов ГОТВ между двумя крайними насадками на одном распределительном трубопроводе или между двумя крайними насадками на двух крайних рядках питающего трубопровода, например рядок 1 и 4, не будет превышать 20%. (см. выкопировку п. 8.11.4). Рабочее давление углекислоты на выходе перед насадками будет приблизительно одинаковым, что обеспечит равномерный расход огнетушащего вещества ГОТВ через все насадки по времени и создание нормативной концентрации газа в любой точке объема защищаемого помещения по истечении времени 60 сек. с момента запуска установки газового пожаротушения.

Другое дело разновидности огнетушащего вещества – хладоны. Нормативное время выхода хладона в защищаемое помещение для модульного пожаротушения – не более 10сек., а для централизованной установки не более – 15 сек. и т.д. (см. СП 5.13130.2009).

пожаротушения по схеме типа “гребенка”.

РИС-3.

Как показывает гидравлический расчет с газом хладон (125, 227еа, 318Ц и ФК-5-1-12) для аксонометрической схемы разводки трубопровода типа “гребенка” не выполняется основное требование свода правил это обеспечение равномерного расхода огнетушащего вещества через все насадки и обеспечения распределения ГОТВ по всему объему защищаемого помещения с концентрацией не ниже нормативной (см. выкопировку п. 8.11.2 и п. 8.11.4). Разница по расходу ГОТВ семейства хладон через насадки между первым и последним рядками могут достигать величины 65% в место допустимых 20%, особенно если количество рядков на питающем трубопроводе достигает 7 шт. и более. Получение таких результатов для газа семейства хладон можно объяснить физикой процесса: скоротечностью происходящего процесса во времени, тем что, каждый последующий рядок забирает часть газа на себя, постепенным увеличением длины трубопровода от рядка к рядку, динамикой сопротивления движению газа по трубопроводу. Значит, первый рядок с насадками на питающем трубопроводе находится в более благоприятных условиях работы, чем последний рядок.

Правило гласит, что разница расходов ГОТВ между двумя крайними насадками на одном распределительном трубопроводе не должна превышать 20% и ничего не говориться о разности расхода между рядками на питающем трубопроводе. Хотя другое правило гласит что, насадки должны размещаться в защищаемом помещении с учетом его геометрии и обеспечивать распределение ГОТВ по всему объему помещения с концентрацией не ниже нормативной.

План разводки трубопровода установки газового

пожаротушения по симметричной схеме.

РИС-4.

Как понимать требование свода правил, система распределительных трубопроводов, как правило, должна быть симметричной (см. выкопировку 8.9.8). Система разводки трубопровода типа “гребенка” установки газового пожаротушения тоже имеет симметрию относительно питающего трубопровода и в тоже время не обеспечивает одинаковый расход газа марки хладон через насадки по всему объему защищаемого помещения.

На Рис-4 изображена система разводки трубопровода для установки газового пожаротушения по всем правилам симметрии. Это определяется по трем признакам: расстояние от газового модуля до любого насадка имеет одну и туже длину, диаметры труб до любого насадка идентичны, количество изгибов и их направленность аналогична. Разность расходов газа между любыми насадками составляет практически ноль. В случае если по архитектуре защищаемого помещения необходимо, какой то распределительный трубопровод с насадком удлинить или сдвинуть в сторону, разность расходов между всеми насадками никогда не выйдет за пределы 20%.

Еще одна проблема для установок газового пожаротушения это большие высоты защищаемых помещений от 5 м. и более (см. Рис-5).

Аксонометрическая схема разводки трубопровода установки газового пожаротушения в помещении одного объема с большой высотой потолков.

Рис-5.

Эта проблема возникает при защите промышленных предприятий, где производственные цеха подлежащие защите могут иметь потолки высотой до 12 метров, специализированные здания архивов, с потолками, достигающими высот 8 метров и выше, ангары для хранения и обслуживания различной спецтехники, станции перекачки газа и нефтепродуктов и т.д. Общепринятая максимальная высота установки насадка относительно пола в защищаемом помещении, широко используемая в установках газового пожаротушения, как правило, составляет не более 4,5 метра. Именно на этой высоте разработчик данного оборудования и проверяет работу своего насадка на предмет соответствия его параметров требованиям СП 5.13130.2009, а также требованиям других нормативных документов РФ по противопожарной безопасности.

При большой высоте производственного помещения, например 8,5 метра, само технологическое оборудование однозначно будет располагаться в низу на производственной площадке. При объемном тушении установкой газового пожаротушения в соответствии правилами СП 5.13130.2009 насадки должны располагаться на потолке защищаемого помещения, на высоте не более 0,5 метра от поверхности потолка в строгом соответствии с их техническими параметрами. Понятно, что высота производственного помещения 8,5 метра не соответствует техническим характеристикам насадка. Насадки должны размещаться в защищаемом помещении с учетом его геометрии и обеспечивать распределение ГОТВ по всему объему помещения с концентрацией не ниже нормативной (см. выкопировку п. 8.11.2 из СП 5.13130.2009). Вопрос как долго по времени будет выравниваться нормативная концентрация газа по всему объему защищаемого помещения с высокими потолками, и какими правилами это может регулироваться. Видится одно решение данного вопроса это условное деление общего объема защищаемого помещения по высоте на две (три) равные части, а по границам данных объемов через каждые 4 метра по направлению вниз по стене симметрично установить дополнительные насадки (см. Рис-5). Дополнительно установленные насадки позволяют быстрей заполнять объем защищаемого помещения огнетушащим веществом с обеспечением нормативной концентрации газа, и что гораздо важнее обеспечивают быструю подачу огнетушащего вещества к технологическому оборудованию на производственной площадке.

Поданной схеме разводки труб (см. Рис-5) удобней всего на потолке иметь насадки с распылением ГОТВ на 360о, а на стенах насадки с боковым распылением ГОТВ на 180о одного типоразмера и равной расчетной площадью отверстий для распыления. Как гласит правило в одном помещении (защищаемом объеме) должны применяться насадки только одного типоразмера (см. выкопировку п. 8.11.6). Правда определение термина насадки одного типоразмера в СП 5.13130.2009 не дается.

Для гидравлического расчета распределительного трубопровода с насадками и расчета массы необходимого количества газового огнетушащего вещества для создания нормативной огнетушащей концентрации в защищаемом объеме, используются современные компьютерные программы. Ранее этот расчет производился в ручную с помощью специальных утвержденных методик. Это было сложным и долгим по времени действием, а полученный результат имел достаточно большую погрешность. Для получения достоверных результатов гидравлического расчета трубной разводки, требовался большой опыт человека занимающегося расчетами систем газового пожаротушения. С появлением компьютерных и обучающих программ гидравлические расчеты стали доступны большому кругу специалистов работающих в данной области. Компьютерная программа «Vector», одна из немногих программ позволяющая оптимально решать всевозможные сложные задачи в области систем газового пожаротушения с минимальными потерями времени на расчеты. Для подтверждения достоверности результатов расчета проведена верификация гидравлических расчетов по компьютерной программе «Vector» и получено положительное Экспертное заключение № 40/20-2016 от 31.03.2016г. Академии ГПС МЧС России на использование программы гидравлических расчетов «Vector» в установках газового пожаротушения со следующими огнетушащими веществами: Хладон 125, Хладон 227еа, Хладон 318Ц, ФК-5-1-12 и СО2 (двуокись углерода) производства ООО «АСПТ Спецавтоматика».

Компьютерная программа гидравлических расчетов «Vector» освобождает проектировщика от рутинной работы. В нее заложены все нормы и правила СП 5.13130.2009, именно в рамках этих ограничений выполняются расчеты. Человек вставляет в программу только свои исходные данные для расчета и вносит правки, если его не устраивает результат.

В заключение хочется сказать, мы гордимся тем, что по признанию многих специалистов, одним из ведущих российских производителей автоматических установок газового пожаротушения в области технологии является ООО «АСПТ Спецавтоматика».

Конструкторами компании разработан целый ряд модульных установок для различных условий, особенностей и функциональных возможностей защищаемых объектов. Оборудование полностью соответствует всем российским нормативным документам. Мы тщательно следим и изучаем мировой опыт по разработкам в нашей области, что позволяет использовать наиболее передовые технологии при разработке установок собственного производства.

Важным преимуществом является то, что наша компания не только проектирует и устанавливает системы пожаротушения, но также имеет собственную производственную базу по изготовлению всего необходимого оборудования для пожаротушения – от модулей до коллекторов, трубопроводов и насадков для распыления газа. Собственная газозаправочная станция дает нам возможность в кратчайшие сроки производить заправку и освидетельствование большого количества модулей, а также проводить комплексные испытания всех вновь разрабатываемых систем газового пожаротушения (ГПТ).

Сотрудничество с ведущими мировыми производителями огнетушащих составов и производителями ГОТВ внутри России позволяет ООО «АСПТ Спецавтоматика» создавать многопрофильные системы пожаротушения, используя наиболее безопасные, высокоэффективные и широко распространенные составы (Хладоны 125, 227еа, 318Ц, ФК-5-1-12, углекислота (СО 2)).

ООО «АСПТ Спецавтоматика» предлагает не один продукт, а единый комплекс - полный набор оборудования и материалов, проект, монтаж, пуско-наладку и последующее техническое обслуживание выше перечисленных систем пожаротушения. В нашей организации регулярно проводится бесплатное обучение по проектированию, монтажу и наладке выпускаемого оборудования, где вы сможете получить наиболее полные ответы на все возникающие вопросы, а также получить любые консультации в области потивопожарной защиты.

Надежность и высокое качество – наш главный приоритет!

Проектирование установок газового пожаротушения (УГП) производится на основании изучения специалистом множества параметров здания, включая довольно специфические аспекты:

  • габариты и конструктивные особенности помещений;
  • количество помещений;
  • распределение помещений по категориям пожароопасности (согласно НПБ № 105-85);
  • наличие людей;
  • параметры технологического оборудования;
  • характеристика систем ОВиК (отопления, вентиляции, кондиционирования) и пр.

Кроме того, проект пожаротушения должен учитывать требования соответствующих норм и правил – так система тушения будет максимально эффективной при борьбе с пожаром и безопасной для людей, находящихся в здании.

Таким образом, к выбору проектировщика установки газового пожаротушения следует отнестись ответственно, лучше, если один и тот же исполнитель будет отвечать не только за проектирование объекта, но и за монтаж и дальнейшее ТО системы.

Техническое описание объекта

Установка газового пожаротушения – это сложная система, которая находит применение при тушении пожаров классов А, В, С, Е в закрытых помещениях. Подбор оптимального варианта ГОТВ (газовое огнетушащее вещество) для УГП позволяет не ограничиваться только теми помещениями, где нет людей, но и активно использовать газовое пожаротушение для защиты объектов, где может находиться обслуживающий персонал.

Технически установка представляет собой комплекс устройств и механизмов. В составе системы газового пожаротушения:

  • модули или баллоны, которые служат для того, чтобы хранить и подавать ГОТВ;
  • распределители;
  • трубопроводы;
  • насадки (клапаны) с запорно-пусковым устройством;
  • манометры;
  • пожарные извещатели, формирующие сигнал о пожаре;
  • контрольные приборы для управления УГП;
  • шланги, адаптеры и другие дополнительные элементы.

Количество насадок, диаметр и длина трубопроводов, также как и другие параметры УГП, рассчитываются мастером-проектировщиком по методикам Норм и Правил проектирования установок газового пожаротушения (НПБ № 22-96).

Составление проектной документации

Составление проектной документации исполнителем осуществляется поэтапно:

  1. Осмотр здания, уточнение требований заказчика.
  2. Анализ исходных данных, выполнение расчетов.
  3. Составление рабочего варианта проекта, утверждение документации с заказчиком.
  4. Оформление окончательного варианта проектной документации, в которую входят:
    • текстовая часть;
    • графические материалы - планировка защищаемых помещений, имеющееся технологическое оборудование, месторасположение УГП, схема подключения, трасса прокладки кабелей;
    • спецификация материалов, оборудования;
    • подробная смета на монтаж;
    • ведомости работ.

От того насколько грамотно и полно составлен проект УГП в дальнейшем зависит скорость монтажа всего оборудования, а также надежная и эффективная эксплуатация системы.

Модуль газового пожаротушения

Для хранения, защиты от внешних воздействий и выпуска ГОТВ для ликвидации возгорания используют специальные модули газового пожаротушения. Внешне это металлические баллоны, снабженные запорно-пусковым устройством (ЗПУ) и сифонной трубкой. Те модели, в которых хранится сжиженный газ, кроме того, имеют устройство для контроля массы ГОТВ (оно может быть как внешним, так и встроенным).

На баллонах обычно имеется информационная табличка, которую заполняет ответственное лицо или мастер по ТО УГП. Регулярно в табличку должны вноситься следующие данные – вместимость модуля, рабочее давление. Также на модулях должна быть маркировка:

  • от предприятия-изготовителя – товарный знак, заводской номер, соответствие ГОСТ, срок годности и т. п.;
  • рабочее и пробное давление;
  • масса пустого и заряженного баллона;
  • вместимость;
  • даты испытаний, зарядок;
  • наименование ГОТВ, его масса.

Активация модуля при пожаре происходит после поступления сигнала от устройств ручного пуска или приемно-контрольного охранно-пожарного прибора на пусковое устройство (ПУ). После срабатывания ПУ образуются пороховые газы, создающие избыточное давление. Благодаря этому ЗПУ вскрывается и огнетушащий газ выходит из баллона.

Стоимость монтажа газового пожаротушения

Проектировщик УГП обязательно проводит предварительный расчет стоимости монтажа установки.

Цена будет зависеть от нескольких факторов:

  • стоимости технологического оборудования – модулей, включая комплектующие и необходимое количество ГОТВ, приемно-контрольных приборов, извещателей, табло, кабельной разводки;
  • высоты и площади защищаемого помещения (или помещений);
  • назначения объекта;
  • типа ГОТВ.

Договор на монтаж системы пожаротушения

Качественный проект установки газового пожаротушения, расчет монтажа, дальнейшее техническое обслуживание системы – все это мы выполняем для наших клиентов.

Такие подробности, как:

  • стоимость работ,
  • порядок оплаты,
  • сроки выполнения монтажа,
  • наши обязательства по отношению к заказчику, –

после обсуждения и утверждения с клиентом будут прописаны в договоре.

В итоге – мы получаем работу, а наш клиент – систему газового пожаротушения гарантированно высокой степени надежности и качества.

По вопросам проектирования и монтажа газовых систем тушения пожара обращайтесь только в специализированные организации. На данный вид работ наше проектно-монтажное бюро инженерных систем имеет специальную лицензию. Профильные специалисты произведут правильные расчеты площади и необходимого количества оборудования, определят расход и вид газосмесей, условий работы персонала, температурный режим здания и учтут другие важные факторы для установки противопожарного газового оборудования. Наше бюро также возьмет на себя гарантийные обязательства по ремонту и сервисному обслуживанию.

Особенности систем газового пожаротушения

Положениями ГОСТа, согласно действующему законодательству России, допускается применение огнетушащих газовых составов на основе азота, углекислого газа, шестифтористой серы, аргона инергена, хладона 23; 227; 218; 125. По принципу воздействия газовых составов на горение, их делят на 2 группы:

1. Ингибиторы (подавители возгорания). Это вещества, вступающие в химическую реакцию с горящими веществами и отнимающие энергию горения.

2. Деоксиданты (выталкиватели кислорода). Это вещества, которые создают вокруг огня концентрированное облако, не пропускающее приток кислорода.

По способу хранения газовые смеси делятся на сжиженные и сжатые.

Применение систем газового тушения пожара охватывает отрасли, где контакт хранимых запасов с жидкостями или порошками недопустим. В первую очередь, это:

  • картинные галереи,
  • музеи,
  • архивы,
  • библиотеки,
  • вычислительные центры.

Установки газовых систем тушения пожара различаются по степени мобильности. Могут использоваться переносные модули тушения локальных очагов воспламенения. Существуют также самоходные и буксируемые пожарные установки. В местах со взрывчатыми веществами, на складах и в хранилищах целесообразнее применять автоматические установки.

В процессе тушения газ из специальных капсул при превышении определенной температуры распыляется в помещение. Очаг возгорания локализуется путем вытеснения из помещения кислорода. Большинство веществ в составе ГОС не токсичны, тем не менее газовые системы пожаротушения могут создать в закрытом помещении непригодную для жизни среду (это касается деоксидантов). По этой причине при входе в помещение, где установлено газовое оборудование для пожаротушения, в обязательном порядке размещают предупреждающие оповещатели. Помещения с установленным газовым пожаротушением должно быть оснащено световыми экранами: на входе «ГАЗ! НЕ ВХОДИ!» и на выходе «ГАЗ! УХОДИ!».

По положению ГОСТ и нормативным актам, все автоматические системы газового тушения пожара должны допускать задержку подачи смеси до окончательной эвакуации людей.

Обслуживание

Обслуживание газовых систем тушения пожара - это специальный комплекс мероприятий, направленный на поддержку системы в состоянии готовности длительное время. Мероприятия включают в себя:

  • Периодическое проведение испытаний не реже одного раза в течение пяти лет;
  • Плановые проверки каждого отдельного модуля на предмет утечки газа;
  • Профилактические работы, проведение текущего ремонта.

Заключая договор на проектирование и обслуживание системы газового пожаротушения, мы тщательно продумаем и пропишем все обязательства с нашей стороны, касающиеся предоставления данной услуги.

Стоимость системы газового пожаротушения складывается из сложности проектирования, комплекса оборудования, объема работ по монтажу и сервисного обслуживания. Заключив договор с проектно-монтажным бюро инженерных систем, вы обеспечите свое производственное хозяйство эффективной системой защиты от пожара, которую будут обслуживать специалисты.

Противопожарная защита зданий и сооружений с каждым годом становится все более и более актуальной. Постепенно усовершенствуются и ужесточаются требования нормативной документации, создавая все условия для своевременного информирования и действенной защиты людей и материальных ценностей при пожаре. Для каждого объекта реализуются целые комплексы противопожарных систем, одной из которых является система газового пожаротушения. В этой статье мы рассмотрим область применения, достоинства и недостатки, основные принципы работы и особенности проектирования систем газового пожаротушения.

Область применения газового пожаротушения

Системы газового пожаротушения хоть и не являются очень распространенными, однако в некоторых случаях без них попросту не обойтись. Среди таких объектов помещения с хранением материальных и художественных ценностей, архивы, библиотеки, машинные залы ЭВМ, серверные и т.п. Это связано с тем, что установки газового пожаротушения не наносят практически никакого вреда, а при наличии правильно организованной системы вентиляции остатки огнетушащего газа удаляются из помещения практически моментально.

Принцип действия системы газового пожаротушения, ее достоинства и недостатки

Механизм действия газового пожаротушения заключается в вытеснении газовым составом находящегося в помещении кислорода, без которого процесс горения становится невозможным. При тушении сжиженным газом дополнительно происходит значительное снижение температуры в зоне тушения, что также положительно сказывается на процессе тушения в целом.

Наиболее значительным плюсом систем газового пожаротушения является нанесение минимального вреда оборудованию и материалам, находящимся в защищаемом помещении. Так, к примеру, для защиты серверных применить никакой из других видов тушения просто невозможно, поскольку тушение пеной, порошком, аэрозолем или же водой непременно приведет к порче дорогостоящего электронного оборудования. Вред, причиненный такими методами тушения может значительно превышать материальные потери при пожаре. Помимо отсутствия материального вреда, среди весомых достоинств системы газового пожаротушения стоит отметить ее повышенную устойчивость к температурным воздействиям, не свойственную ни одной из остальных систем пожаротушения. Удалить выпущенный газ из помещения достаточно просто - с помощью стационарной или передвижной вентиляционной установки.

Однако системам газового тушения свойственны и определенные минусы, которые обязательно должны учитываться в процессе проектирования. Наиболее весомым из них является высокая опасность для жизни и здоровья людей. Всего один вдох огнетушащего газового состава сводит к минимуму шансы на выживание. А потому обязательным условием для пуска таких систем является эвакуация всех находящихся в помещении людей, а также контроль закрытия входной двери. Кроме того, дополнительно необходимо предусматривать специальные отверстия, через которые будет производиться сброс избыточного давления. Сложность построения систем газового пожаротушения и их относительно высокая стоимость делает такие системы менее популярными среди других. Однако если Вам необходимо обезопасить помещения с хранением материальных или же духовных ценностей, дорогостоящих машин и механизмов, система газового пожаротушения станет наиболее правильным и аргументированным выбором.

Состав системы газового пожаротушения

Итак, для начала рассмотрим что входит в состав стандартной установки газового пожаротушения. Первое и основное - баллон (1 или несколько) с газом, оснащенный пиропатроном или клапаном с электрозапуском. Количество баллонов рассчитывается при проектировании с учетом необходимого количества огнетушащего вещества для каждого конкретного помещения. Естественно, что все эти расчеты должны производиться исключительно квалифицированными специалистами, имеющими все необходимые разрешительные документы для выполнения данного вида работ. Далее от баллона проводится система трубопроводов, на конце которых располагаются распылительные насадки. Именно через них и производится заполнение защищаемого помещения огнетушащим газом. Ну и конечно в составе каждой системы присутствует прибор контроля и управления, который по сигналу от пожарных извещателей инициирует запуск пожаротушения. Он же включает световые указатели и сирены, а также передает сигналы на отключение приточно-вытяжной вентиляции и кондиционирования, закрытие огнезадерживающих клапанов, пуск системы дымоудаления и т.д. Все эти моменты обязательно оговариваются с заказчиком и технологом и реализуются в процессе проектирования объекта.

Алгоритм работы системы газового пожаротушения

1. ПКУ получает сигнал «Пожар» от пожарных извещателей, расположенных в защищаемом помещении. Как правило, для избежания ложных сработок, формирование такого сигнала производится по сигналу от 2-х извещателей. Если же сигнал приходит только от 1 извещателя, а подтверждения нет, ПКУ его просто сбрасывает.

2. При получении сигнала «Пожар», ПКУ включает расположенные над дверью защищаемого помещения световой указатель и «Газ. Выходи» и звуковые оповещатели, находящиеся внутри помещения, после чего начинает отсчет задержки пуска тушения. Такая процедура необходима для того, чтобы все находящиеся в помещении люди успели его покинуть до начала выпуска огнетушащего вещества. Далее ПКУ провозит контроль двери помещения, с помощью установленного на ней магнитоконтактного извещателя. Если дверь закрыта - производится запуск тушения, если нет - отсрочка пуска до момента закрытия двери. В случае если автоматика отключена, необходимо выполнить запуск системы в ручном режиме с помощью установленной возле защищаемого помещения кнопки «Пуск тушения» или же удаленно с ПКУ.

3. После запуска тушения, содержащийся в баллоне газ подается по распределительным трубопроводам к распыляющим насадкам, расположенным в помещении. Одновременно с этим загорается расположенное на входе табло «Газ. Не входить», оповещющее о том, что помещение наполнено газом и вход туда опасен. На ПКУ высвечивается сообщение об удачном пуске системы.

4. По завершении тушения ПКУ возникает необходимость в удалении продуктов горения и огнетушащего состава из помещения. Для этого ПКУ отдает сигнал системе дымоудаления, которая открывает клапан и включает вытяжные вентиляторы. Также этот процесс можно выполнять при помощи передвижной установки дымоудаления, один рукав которой подключается к специальным отверстиям в стене помещения, а второй - выкидывается в окно или дверь за пределы здания. Такое решения применяется значительно чаще стационарной установки, поскольку значительно дешевле и не требует никаких монтажных работ. Кроме того, если на защищаемом объекте несколько помещений с газовым пожаротушением, для всех них будет достаточно всего 1 передвижной установки дымоудаления, что также позволит значительно сэкономить бюджет.

По сути, представленный выше алгоритм актуален для любых систем газового пожаротушения и практически не зависит от производителя оборудования. Среди производителей стоит отметить системы компании Болид, построенные на основе С2000-АСПТ с возможностью внешнего управления с ПКУ С2000-М, а также менее известные системы компаний Рубеж и Гранд Магистр. Выбор оборудования и проектирование системы газового пожаротушения должны производиться исключительно квалифицированными специалистами, имеющими разрешение на выполнение данного вида работ.

Специалисты нашей компании имеют многолетний опыт работы в проектировании систем противопожароной безопасности и газового пожаротушения в частности. Выполнение проектных работ быстро и качественно - это наша работа. В процессе будут учтены все пожелания заказчика, требования действующей нормативной документации, а также конструктивные особенности каждого конкретного объекта. Кроме того, у нас Вы сможете получить ответы на интересующие Вас вопросы относительно систем газового пожаротушения, а также получить квалифицированную помощь в подборе необходимого оборудования.

Настоящая установка автоматического модульного объемного газового пожаротушения в помещении резервного офиса Банка, выполнена на основании проекта и в соответствии с нормативными документами:

  • СП 5.13130.2009. «Установки пожарной сигнализации и пожаротушения автоматические. Нормы и правила проектирования».
  • ГОСТ Р 50969-96 «Установки газового пожаротушения автоматические. Общие технические требования. Методы испытаний».
  • ГОСТ Р 53280.3-2009 «Установки пожаротушения автоматические. Огнетушащие вещества. Общие технические требования. Методы испытаний».
  • ГОСТ Р 53281-2009 «Установки газового пожаротушения автоматические. Модули и батареи. Общие технические требования. Методы испытаний».
  • СНиП 2.08.02-89* «Общественные здания и сооружения».
  • СНиП 11-01-95 «Инструкция о составе, порядке разработки, согласования и
  • утверждения проектной документации на строительство предприятий, зданий и сооружений».
  • ГОСТ 23331-87. «Пожарная техника. Классификация пожаров».
  • ПБ 03-576-03. «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением».
  • СНиП 3.05.05-84. «Технологическое оборудование и технологические трубопроводы».
  • ПУЭ-98. «Правила устройства электроустановок».
  • СНиП 21-01-97*. «Пожарная безопасность зданий и сооружения».
  • СП 6.13130.2009. «Системы противопожарной защиты. Электрооборудование. Требования пожарной безопасности».
  • Федеральный закон от 22 июля 2008 г. № 123-ФЗ. «Технический регламент о требованиях пожарной безопасности».
  • ППБ 01-2003. «Правила пожарной безопасности в Российской Федерации».
  • ВСН 21-02-01 МО РФ «Установки газового пожаротушения автоматические объектов Вооруженных Сил Российской Федерации. Нормы и правила проектирования».

2. Краткая характеристика защищаемых помещений

Автоматической установкой газового пожаротушения модульного типа подлежат следующие помещения:

3. Основные технические решения, принятые в проекте

По способу тушения в защищаемых помещений принята система объёмного газового пожаротушения. Способ объёмного газового пожаротушения основан на распределении огнетушащего вещества и создании огнетушащей концентрации во всём объёме помещения, что обеспечивает эффективное тушение в любой точке, в том числе и в труднодоступных местах. В качестве огнетушащего вещества в установке газового пожаротушения принят хладон 125 (C2F5H). Автоматическая установка газового пожаротушения включает в себя:

– Модули МГХ с огнетушащим веществом Хладон125;

– Трубная разводка с установленными на них насадками для выпуска и равномерного распределения огнетушащего состава в защищаемом объёме;

– приборы и устройства контроля и управления установкой;

– устройства для сигнализации о положении дверей в защищаемом помещении;

– устройства звуковой и световой сигнализации и оповещения о срабатывании и пуске газа.

Для хранения и выпуска ГОТВ используются автоматические модули газового пожаротушения МГХ емкостью 80 литров. Модуль газового пожаротушения состоит из металлического корпуса (баллона), запорно-пусковой головки. Запорно-пусковое устройство имеет манометр, пиропатрон, предохранительную чеку и предохранительную мембрану. Для выпуска и равномерного распределения газа по объему защищаемого помещения используются трубопровод выпускной. В качестве огнетушащего вещества принят озононеразрушающий хладон 125 с нормативной концентрацией ГОТВ равной 9,8% (об). Время выпуска в защищаемые помещения расчётной массы хладона 125 составляет менее 10с. Обнаружение возгорания в защищаемых помещениях производится с помощью автоматических пожарных дымовых извещателей типа ИП-212, включенных в сеть системы пожарной сигнализации, количество и размещение пожарных извещателей (не менее 3-х в защищаемом помещении) предусмотрено с учетом взаимодействия с установкой пожаротушения. Для управления автоматической установкой пожаротушения и контроля ее состояния, используется устройство сигнально-пусковое охранно-пожарное. Система автоматического управления газового пожаротушения работает по следующему алгоритму:

– при получении сигнала «ПОЖАР» в защищаемом помещении по интерфейсной линии от системы АПС подается светозвуковой сигнал оповещения – «ГАЗ УХОДИ», «ГАЗ НЕ ВХОДИ».

– Не менее чем через 10 с. После поступления сигнала «ПОЖАР» выдаётся импульс на пускатели модулей.

– Автоматический пуск отключается при открытии двери в защищаемое помещение и при переводе системы в режим «АВТОМАТИКА ОТКЛЮЧЕНА»;

– Обеспечивается ручной (дистанционный) запуск системы;

– Обеспечивается автоматическое переключение электропитания с основного источника (220 В) на резервный (аккумуляторные батареи), при пропадании электропитания на рабочем вводе;

– Обеспечивается контроль электрических цепей пускового модуля, светозвуковых сигнальных устройств.

Дистанционный запуск системы тушения и сигнализации о пожаре осуществляется при визуальном обнаружении пожара. Для автоматического закрытия дверей помещений, проект предусматривает установку устройства автоматического закрытия двери (дверной доводчик). Сигнал от контрольно-пусковой панели передается на пульт сигнализации, установленный в помещении с круглосуточным пребыванием дежурного персонала. Пульт дистанционного пуска (ПДП) устанавливается на высоте не 1,5м от уровня пола рядом с защищаемым помещением. Выдача сигналов на пусковые устройства, световые и звуковые оповещатели осуществляется цепями запуска контрольно-пусковой панели. Контроль подачи газа осуществляется сигнализаторами давления универсальными (СДУ).

4. Расчет количества газового огнетушащего состава и характеристика модулей газового пожаротушения.

4.1.1. Гидравлический расчет выполнен в соответствии с требованиями СП 5.13130-2009 (Приложение Е). 4.1.2. Определяем массу ГОС Мг, которая должна храниться в установке по формуле: Мг = К1*(Мр + Мтр. + Мбхn), где (1) Мр – расчетная масса ГОС, предназначенная для тушения пожара в защищаемом объеме, кг; Мтр. – остаток ГОС в трубопроводах, кг; Мб – остаток ГОС в баллоне, кг; n – количество баллонов в установке, шт; К1 = 1,05 – коэффициент, учитывающий утечки газового огнетушащего вещества из сосудов. Для хладона 125 расчетная масса ГОС определяется по формуле: Мр = Vp х r1х(1+K2)хCн/(100-Сн), где (2) Vp – объем защищаемого помещения, м3. r1 – плотность ГОС с учетом высоты защищаемого объекта относительно уровня моря, кг/м3 и определяется по формуле: r1=r0хК3хТо/Тм,где (3) r0 – плотность ГОС при То= 293К(+20°С) и атмосферном давлении 0.1013 Мпа. r0=5.208 кг/м3; К3 – поправочный коэффициент, учитывающий высоту расположения объекта относительно уровня моря. В расчетах принимается равным 1 (таблица Д.11, приложения Д СП 5.13130-2009); Тм – минимальная эксплуатационная температура в защищаемом помещении принимается равным 278К. r1=5.208 х 1 х (293/293) = 5,208 кг/м 3 ; К2 – коэффициент, учитывающий потери ГОС через негерметичности помещения и определяется по формуле: К2=П х d х tпод. √Н, где (4) П = 0.4 – параметр, учитывающий расположение проемов по высоте защищаемого помещения, м 0,5 с -1 . d – параметр негерметичности помещения определяется по формуле: d=Fн/Vр.,где (5) Fн – суммарная площадь негерметичности помещения, м 2 . tпод. – время подачи ГОС принимается равным для хладона 10сек (СП 5.13130-2009). H – высота помещения, м (в нашем случае H=3.8м). К2 = 0.4 ´ 0.016 ´ 10 ´ Ö 3.8= 0.124 Подставив значения, определенные выше, в формулу 2 получим Мр ГОС, необходимого для тушения пожара в помещении: Мр = 1,05 х (91,2) х 5.208 х (1+0.124) х 9.8/(100-9.8) = 60,9кг. 4.1.3. Применяемая в данном проекте трубная разводка обеспечивает выпуск газа в помещение за нормативное время и не требует гидравлического расчета в данном проекте, т.к. время выпуска подтверждено гидравлическим расчетом предприятия изготовителя и испытаниями. 4.1.4. Расчет площади проемов. Расчет площади поемов для сброса избыточного давления проводим в соответствии с Приложением З СП 5.13130.2009

5. Принцип действия установки

В соответствии с СП 5.13130-2009* автоматическая модульная установка газового пожаротушения обеспечена тремя видами пуска: автоматическим, дистанционным. Автоматический пуск осуществляется при одновременном срабатывании не менее 2-х автоматических пожарных дымовых извещателей контролирующих защищаемое помещение. При этом контрольно-пусковая панель формирует сигнал «ПОЖАР» и передает по двухпроводной линии связи в пульт сигнализации. В защищаемом помещении включается светозвуковая сигнализация «Газ – Уходи!» а у входа в защищаемое помещение включается световая сигнализация «Газ – Не входи!». Не менее чем через 10 секунд – необходимых для эвакуации обслуживающего персонала из защищаемого помещения и принятия решения об отключении автоматического запуска (оператором в помещении дежурного персонала), по цепям «запуск пожаротушения» подается электрический импульс на запорно-пусковые устройства, установленные на модулях газового пожаротушения. При этом осуществляется сброс давления рабочего газа в запорно-пусковую полость ЗПУ. Сброс давления рабочего газа вызывает перемещение клапана, открытие ранее перекрытого сечения и вытеснение хладона под избыточным давлением в магистральный и распределительный трубопроводы к насадкам. Поступая под давлением к насадкам, хладон распыляется через них в защищаемый объём. На станцию пожарной сигнализации объекта поступает сигнал от CДУ, установленном на магистральном трубопроводе, о выходе огнетушащего вещества. В целях обеспечения безопасности лиц, работающих в защищаемом помещении, в схеме предусмотрено отключение автоматического пуска при открывании двери в защищаемое помещение. Таким образом, автоматический режим включения установки возможен только в период отсутствия людей, работающих в защищаемом помещении. Отключение режима автоматической работы установки осуществляется с помощью пульта дистанционного пуска (ПДП). ПДП устанавливается рядом с защищаемым помещением. ПДП позволяет осуществлять дистанционный (ручной) пуск огнетушащего вещества. При визуальном обнаружении пожара, убедившись в отсутствии людей в защищаемом помещении, необходимо плотно закрыть дверь помещения, где возник пожар, и с помощью кнопки дистанционного пуска произвести пуск установки пожаротушения. Не следует вскрывать защищаемое помещение, в которое разрешен доступ, или нарушать его герметичность другим способом в течение 20 минут после срабатывания автоматической модульной установки газового пожаротушения (или до приезда подразделений пожарной охраны).