Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение кожухотрубных теплообменников в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

    однофазные потоки, кипение и конденсация по горячей и холодной сторонамтеплообменника с вертикальным или горизонтальным исполнением;

    диапазон давления от вакуума до высоких значений;

    в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов;

    удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата;

    размеры от малых до предельно больших (5000 м 2);

    возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению;

    использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д;

    возможность извлечения пучка труб для очистки и ремонта.

В кожухотрубчатом теплообменнике один из теплоносителей протекает по трубам, другой – по межтрубному пространству. Теплота от одного теплоносителя другому передается через поверхность стеной труб.

Кожухотрубчатые теплообменники бывают одноходовыми, здесь оба теплоносителя не меняя направления движутся по всему сечению (один по трубному, другой по межтрубному), и многоходовыми, в которых потоки с помощью дополнительных перегородок последовательно меняют направление, тем самым, увеличивая коэффициент теплоотдачи и скорость потока.

Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крышки, патрубки. Концы труб крепятся в трубных решетках развальцовкой, сваркой и пайкой.

Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки, как в трубном, так и в межтрубном пространствах.

Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от величины температурных удлинений трубок и корпуса применяют кожухотрубчатые теплообменники жесткой, полужесткой и нежесткой конструкции. Один из вариантов такого теплообменника представлен на рисунке 1.2.1.

Рис. 1.2 - Кожухотрубчатый теплообменник

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров.

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи.

История кожухотрубных теплообменников

Впервые аппараты такого рода были разработаны в самом начале ХХ века, когда у тепловых станций возникла потребность в теплообменниках, обладающих большой поверхностью теплообмена, и способных работать при достаточно высоком давлении.

Сегодня кожухотрубные теплообменники используются в качестве подогревателей, конденсаторов и испарителей. Опыт многолетней эксплуатации, многочисленные конструкторские разработки привели к значительному усовершенствованию их конструкции.

Тогда же, в начале прошлого века, кожухотрубные теплообменники начали широко применять и в нефтяной промышленности. Тяжелые условия нефтепереработки требовали нагреватели и охладители нефтяной массы, конденсаторы и испарители для отдельных фракций сырой нефти и органических жидкостей.

Высокие температура и давление, при которых работала аппаратура, свойства самой нефти и ее фракций приводили к быстрому загрязнению отдельных частей аппаратов. В связи с этим теплообменники должны были обладать такими конструктивными особенностями, которые бы обеспечивали легкость их очистки и при необходимости - ремонта.

Варианты исполнения

Со временем кожухотрубные теплообменники получили широчайшее применение. Это определялось простотой и надежностью конструкции, а также большим числом возможных вариантов исполнения, подходящих для различных условий эксплуатации, в том числе:

вертикальное или горизонтальное исполнение теплообменника, кипение или конденсация, однофазные потоки теплоносителя на горячей или холодной стороне аппарата;

возможный рабочий диапазон давлений от вакуума до довольно высоких значений;

возможность изменения перепадов давления в широких пределах по обеим сторонам теплообменной поверхности как следствие большого числа вариантов конструкций.

возможность удовлетворения требований по термическим напряжениям, не повышая существенно стоимость аппарата;

размеры аппаратов - от маленьких до самых больших, до 6000 м²;

материалы могут быть подобраны в зависимости от требований к коррозии, давлению и температурному режиму, с учетом их соответствующей стоимости;

поверхности теплообмена могут быть использованы как внутри труб, так и снаружи;

возможность доступа к пучку труб для их ремонта или очистки.

Однако широкие области применения кожухотрубных теплообменников при подборе наиболее подходящих вариантов для каждого конкретного случая не должны исключать и поиск альтернативных вариантов.

Составные части

Составные части кожухотрубных теплообменников: пучки труб, укрепленные в трубных решетках, крышки, кожухи, патрубки, камеры и опоры. Трубное и межтрубное пространства в них чаще всего разделены перегородками.

Принципиальные схемы и типы

Принципиальные схемы наиболее широко распространенных типов кожухотрубных теплообменников представлены на рисунке:

Кожух теплообменника - это труба, сваренная из стальных листов. Различие кожухов состоит главным образом в способе соединения корпуса с трубной решеткой и с крышками. Толщину стенки кожуха выбирают в зависимости от рабочего давления среды и его диаметра, но в основном принимают не менее 4 мм. К кромкам кожуха посредством фланцев приваривают крышки или днища. Снаружи к кожуху крепятся опоры аппарата.

В кожухотрубных теплообменниках общее эффективное сечение межтрубного пространства обычно больше в 2-3 раза, чем соответствующее сечение труб. Поэтому независимо от разности температур теплоносителей и их фазового состояния общий коэффициент теплопередачи лимитируется поверхностью межтрубного пространства и остается невысоким. С целью его повышения устанавливают перегородки, что увеличивает скорость теплоносителя и повышает эффективность теплообмена.

Пучок труб закрепляется в трубных решетках различными методами: с помощью разбортовки, развальцовки, запайки, заварки или сальниковыми креплениями. Трубные решетки привариваются к кожуху (Тип 1 и 3), либо зажимаются болтами между фланцами крышки и кожуха (Тип 2 и 4), или же соединяются болтами лишь с фланцем (Тип 5 и 6). В качестве материала для решетки используется обычно листовая сталь, толщина которой должна быть не меньше 20 мм.

Данные теплообменники различаются по конструкции: жесткой (Тип 1 и 10), полужесткой (Тип 2, 3 и 7) и нежесткой (Тип 4, 5, 6, 8 и 9), по способу движения теплоносителя - многоходовые и одноходовые, прямоточные, поперечноточные и противоточные, и по способу расположения - вертикальные, горизонтальные и наклонные.

На рисунке Тип 1 представлен одноходовой теплообменник жесткой конструкции с прямыми трубками. Кожух жестко связан с трубками решетками, возможность компенсации тепловых удлинений отсутствует. Конструкция таких аппаратов проста, но их можно применять только при не очень большой температурной разности между пучком труб и корпусом (до 50°C). Кроме того, коэффициент теплопередачи в аппаратах такого типа низок, потому что скорость теплоносителя в межтрубном пространстве невысока.

В кожухотрубных теплообменниках сечение межтрубного пространства обычно в 2-3 раза больше, чем соответствующее сечение труб. Поэтому на общий коэффициент теплопередачи влияет не столько разность температур теплоносителей или их фазовое состояние, напротив, он лимитируется поверхностью межтрубного пространства и остается невысоким. С целью его повышения в межтрубном пространстве делают перегородки, что несколько увеличивает скорость теплоносителя и тем самым повышает эффективность теплообмена.

Перегородки, установленные в межтрубном пространстве, увеличивая скорость теплоносителя, повышают коэффициент теплоотдачи.

В парожидкостных теплообменниках обычно в межтрубном пространстве пропускают пар, а жидкость идет по трубам. При этом разность температур труб и стенки корпуса обычно очень велика, что требует установки различного вида компенсаторов. В этих случаях используют линзовые (Тип 3), сильфонные (Тип 7) сальниковые (Тип 8 и 9), компенсаторы.

Однокамерные теплообменники с W - или чаще U -образными трубами также эффективно устраняют тепловые напряжения в металле. Их целесообразно использовать при высоких давлениях теплоносителей, так как в аппаратах высокого давления крепление труб в решетках - операции дорогие и технологически сложные. Однако теплообменники с гнутыми трубами также не получили широкого распространения в связи с трудностью получения труб с различными радиусами изгиба, сложностью замены гнутых труб и проблемами, возникающими при их очистке.

Конструкция теплообменника, предусматривающая жесткое крепление одной трубной решетки и свободное перемещение второй, более совершенна. В этом случае устанавливается дополнительная внутренняя крышка, которая относится непосредственно к трубной системе (Тип 6). Незначительное удорожание аппарата, связанное с увеличением диаметра корпуса и изготовлением второго, дополнительного, днища, оправдывается надежностью в эксплуатации и простотой конструкции. Такие аппараты называют теплообменниками «с плавающей головкой».

Теплообменники поперечного тока (Тип 10) отличает повышенный коэффициент теплоотдачи, так как теплоноситель в межтрубном пространстве движется поперек пучка труб. В некоторых видах таких теплообменников при использовании в межтрубном пространстве газа, а в трубах - жидкости, коэффициент теплоотдачи дополнительно повышают, применяя трубы с поперечными ребрами.

Принцип действия кожухотрубных теплообменников:

Виды кожухотрубных теплообменников:

подогреватели водоводяные;
охладители воды и масел компрессоров и дизелей;
подогреватели пароводяные;
маслоохладители различных типов турбин, гидравлических прессов, насосных и компрессорных систем, силовых трансформаторов;
охладители и подогреватели воздуха;
охладители и подогреватели пищевых сред;
охладители и подогреватели, использующиеся в нефтехимии;
подогреватели воды в бассейнах;
испарители и конденсаторы холодильных установок.

Сфера и область применения

Кожухотрубные теплообменники применяются в промышленных морозильных установках, в нефтехимической, химической и пищевой отраслях, для тепловых насосов в системах водоочистки и канализации.

Кожухотрубные теплообменники находят применение в химической и тепловой промышленности для теплообмена между жидкостными, газо- и парообразными теплоносителями в термохимических процессах, и сегодня являются наиболее широко распространенными аппаратами.

Преимущества:

Надежность кожухотрубных теплообменников в эксплуатации:

Кожухотрубные теплообменные аппараты с легкостью выдерживают резкие изменения температуры и давления. Пучки труб не разрушаются при вибрации и гидравлических ударах.

Слабая загрезняемость аппаратов

Трубы этого типа теплообменников загрязняются мало и их можно довольно легко очистить кавитационно-ударным методом, химическим, или - для разборных аппаратов- механическим способами.

Длительный срок службы

Срок службы довольно длительный - до 30 лет.

Адаптируемость к различным средам

Кожухотрубные теплообменники, применяемые сегодня в промышленности, адаптированы к самым различным технологическим средам, в том числе к санитарной, морской и речной воде, нефтепродуктам, маслам, химически активным средам, и даже самые агрессивные среды практически не снижают надежность теплообменных аппаратов.

Кожухотрубные теплообменники относятся к наиболее распространенным аппаратам. Их применяют для теплообмена и термохимических процессов между различными жидкостями, парами и газами – как без изменения, так и с изменением их агрегатного состояния.

Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

  • однофазные потоки, кипение и конденсация по горячей и холодной сторонам теплообменника с вертикальным или горизонтальным исполнением
  • диапазон давления от вакуума до высоких значений
  • в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов
  • удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата
  • размеры от малых до предельно больших (5000 м 2)
  • возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению
  • использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д.
  • возможность извлечения пучка труб для очистки и ремонта

Однако такое широкое разнообразие условий применения кожухотрубных теплообменников и их конструкций никоим образом не должно исключать поиск других, альтернативных решений, таких, как применение пластинчатых, спиральных или компактных теплообменников в тех случаях, когда их характеристики оказываются приемлемыми и их применение может привести к экономически более выгодным решениям.

Кожухотрубные теплообменники состоят из пучков труб, укрепленных в трубных досках, кожухов, крышек, камер, патрубков и опор. Трубное и межтрубное пространства в этих аппаратах разобщены, причем каждое из них может быть разделено перегородками на несколько ходов. Классическая схема показана на рисунке:

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор паровой турбины мощностью 150 Мвт состоят из 17 тысяч труб с общей поверхностью теплообмена около 9000 м 2 .

Схемы кожухотрубчатых аппаратов наиболее распространенных типов представлены на рисунке:

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

Трубчатка кожухотрубчатых теплообменников выполняется из прямых или изогнутых (U-образных или W-образных) труб диаметром от 12 до 57 мм. Предпочтительны стальные бесшовные трубы.

В проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения внутри труб. Поэтому при равных расходах теплоносителей с одинаковым фазовым состоянием коэффициенты теплоотдачи на поверхности межтрубного пространства невысоки, что снижает общий коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве кожухотрубчатого теплообменника способствует увеличению скорости теплоносителя и повышению эффективности теплообмена.

Трубные доски (решетки) служат для закрепления в них пучка труб при помощи развальцовки, разбортовки, заварки, запайки или сальниковых креплений. Трубные доски приваривают к кожуху (рис. а, в), зажимают болтами между фланцами кожуха и крышки (рис. б, г) или соединяют болтами только с фланцем свободной камеры (рис. д, е). материалом досок служит обычно листовая сталь толщиной не менее 20 мм.

Кожухотрубчатые теплообменники могут быть жесткой (рис. а, к), нежесткой (рис. г, д, е, з, и) и полужесткой (рис. б, в, ж) конструкции, одноходовые и многоходовые, прямоточные, противоточные и поперечноточные, горизонтальные, наклонные и вертикальные.

На рисунке а) изображен одноходовой теплообменник с прямыми трубками жесткой конструкции. Кожух и трубки связаны трубными решетками и поэтому нет возможности компенсации тепловых удлинений. Такие аппараты просты по устройству, но могут применяться только при сравнительно небольших разностях температур между корпусом и пучком труб (до 50 о С). Они имеют низкие коэффициенты теплопередачи вследствие незначительной скорости теплоносителя в межтрубном пространстве.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи. На рисунке 1,б изображен теплообменник с поперечными перегородками в межтрубном пространстве и полужесткой мембранной компенсацией тепловых удлинений вследствие некоторой свободы перемещения верхней трубной доски.

В парожидкостных теплообменниках пар проходит обычно в межтрубном пространстве, а жидкость – по трубам. Разность температур стенки корпуса и труб обычно значительна. Для компенсации разности тепловых удлинений между кожухом и трубами устанавливают линзовые (рис. в), сальниковые (рис. з, и) или сильфонные (рис. ж) компенсаторы.

Для устранения напряжений в металле, обусловленных тепловыми удлинениями, изготавливают также однокамерные теплообменники с гнутыми U- и W-образными трубами. Они целесообразны при высоких давлениях теплоносителей, так как изготовление водяных камер и крепление труб в трубных досках в аппаратах высокого давления – операции сложные и дорогие. Однако аппараты с гнутыми трубами не могут получить широкого распространения из-за трудности изготовления труб с разными радиусами гиба, сложности замены труб и неудобства чистки гнутых труб.

Компенсационные устройства сложны в изготовлении (мембранные, сильфонные, с гнутыми трубами) или недостаточно надежны в эксплуатации (линзовые, сальниковые). Более совершенна конструкция теплообменника с жестким креплением одной трубной доски и свободным перемещением второй доски вместе с внутренней крышкой трубной системы (рис. е). некоторое удорожание аппарата из-за увеличения диаметра корпуса и изготовления дополнительного днища оправдывается простотой и надежностью в эксплуатации. Эти аппараты получили название теплообменников «с плавающей головкой». Теплообменники с поперечным током (рис. к) отличаются повышенным коэффициентом теплоотдачи на наружной поверхности вследствие того, что теплоноситель движется поперек пучка труб. При перекрестном токе снижается разность температур между теплоносителями, однако при достаточном числе трубных секций различие в сравнении с противотоком невелико. В некоторых конструкциях таких теплообменников при протекании газа в межтрубном пространстве и жидкости в трубах для повышения коэффициента теплоотдачи применяют трубы с поперечными ребрами.

Теплообменник кожухотрубный (кожухотрубчатый) горизонтальный

Tube heat exchanger

Компания NORMIT имеет широкий модельный ряд теплообменников, который способен удовлетворить любые требования различных видов промышленности. Мы готовы предоставить нашим Клиентам оборудование европейского качества по разумным ценам.

Назначение

Кожухотрубные теплообменники применяются для теплообмена и термохимических процессов между различными жидкостями, парами и газами – как без изменения, так и с изменением их агрегатного состояния. Кожухотрубные теплообменники могут применяться

в качестве конденсаторов, подогревателей и испарителей. В настоящее время конструкция теплообменника в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной.


Преимущества кожухотрубных теплообменников :

  • Надежность
  • Высокая эффективность
  • Компактность
  • Широкий спектр применений
  • Большая площадь теплообмена
  • Не повреждает структуру продукта
  • Легкая очистка и обслуживание
  • Отсутствие "мертвых зон"
  • Возможна комплектация CIP-мойкой
  • Низкие затраты электроэнергии
  • Безопасное использование для персонала

Кожухотрубные теплообменники являются одними из самых широко применяемых аппаратов в этой области во многом благодаря своей надежной конструкции и множеству вариантов исполнения в соответствии с различными условиями эксплуатации.

Технические характеристики могут меняться в соответствии с технологическими требованиями Клиента:

  • однофазные потоки, кипение и конденсация по горячей и холодной сторонам теплообменника с вертикальным или горизонтальным исполнением
  • диапазон давления от вакуума до высоких значений
  • в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов
  • удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата
  • размеры от малых до предельно больших (5000 м 2)
  • возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению
  • использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д.
  • возможность извлечения пучка труб для очистки и ремонта.

Описание

Кожухотрубные теплообменники состоят из пучков труб, укрепленных в трубных досках, кожухов, крышек, камер, патрубков и опор. Трубное и межтрубное пространства в этих аппаратах разобщены, причем каждое из них может быть разделено перегородками на несколько ходов.

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор паровой турбины мощностью 150 Мвт состоят из 17 тысяч труб с общей поверхностью теплообмена около 9000 м 2 .

Кожух кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются между собой главным образом способом соединения с крышками и трубной доской. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.


Трубчатка кожухотрубчатых теплообменников выполняется из прямых или изогнутых (U-образных или W-образных) труб диаметром от 12 до 57 мм. Предпочтительны стальные бесшовные трубы.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения внутри труб. Поэтому при равных расходах теплоносителей с одинаковым фазовым состоянием коэффициенты теплоотдачи на поверхности межтрубного пространства невысоки, что снижает общий коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве кожухотрубчатого теплообменника способствует увеличению скорости теплоносителя и повышению эффективности теплообмена.

Ниже представлены схемы наиболее распространенных аппаратов:


Кожухотрубчатые теплообменники могут быть жесткой, нежесткой и полужесткой конструкции, одноходовые и многоходовые, прямоточные, противоточные и поперечноточные, горизонтальные, наклонные и вертикальные.

В одноходовом теплообменнике с прямыми трубками жесткой конструкции кожух и трубки связаны трубными решетками и поэтому нет возможности компенсации тепловых удлинений. Такие аппараты просты по устройству, но могут применяться только при сравнительно небольших разностях температур между корпусом и пучком труб (до 50 о С). Они имеют низкие коэффициенты теплопередачи вследствие незначительной скорости теплоносителя в межтрубном пространстве.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи.

В парожидкостных теплообменниках пар проходит обычно в межтрубном пространстве, а жидкость – по трубам. Разность температур стенки корпуса и труб обычно значительна. Для компенсации разности тепловых удлинений между кожухом и трубами устанавливают линзовые, сальниковые или сильфонные компенсаторы.

Для устранения напряжений в металле, обусловленных тепловыми удлинениями, изготавливают также однокамерные теплообменники с гнутыми U- и W-образными трубами. Они целесообразны при высоких давлениях теплоносителей, так как изготовление водяных камер и крепление труб в трубных досках в аппаратах высокого давления – операции сложные и дорогие. Однако аппараты с гнутыми трубами не могут получить широкого распространения из-за трудности изготовления труб с разными радиусами гиба, сложности замены труб и неудобства чистки гнутых труб.

Компенсационные устройства сложны в изготовлении (мембранные, сильфонные, с гнутыми трубами) или недостаточно надежны в эксплуатации (линзовые, сальниковые). Более совершенна конструкция теплообменника с жестким креплением одной трубной доски и свободным перемещением второй доски вместе с внутренней крышкой трубной системы. некоторое удорожание аппарата из-за увеличения диаметра корпуса и изготовления дополнительного днища оправдывается простотой и надежностью в эксплуатации. Эти аппараты получили название теплообменников «с плавающей головкой». Теплообменники с поперечным током отличаются повышенным коэффициентом теплоотдачи на наружной поверхности вследствие того, что теплоноситель движется поперек пучка труб. При перекрестном токе снижается разность температур между теплоносителями, однако при достаточном числе трубных секций различие в сравнении с противотоком невелико. В некоторых конструкциях таких теплообменников при протекании газа в межтрубном пространстве и жидкости в трубах для повышения коэффициента теплоотдачи применяют трубы с поперечными ребрами.

Широкое использование кожухотрубных теплообменников и их конструкций не должно исключать применения скребковых теплообменников и теплообменников "труба в трубе" в тех случаях, когда их применение оказывается более приемлемым с точки зрения технологических и экономических характеристик.

Технические параметры:

Модель

NORMIT Heatex tube 1

NORMIT Heatex tube 2

NORMIT Heatex tube 3

NORMIT Heatex tube 4

Площадь теплообмена, м2

Материал

AISI 304

Количество труб, шт

Температура, °C

До 200

Размеры:

Габаритные размеры, мм

A

B

C

NORMIT Heatex tube 1

1500

NORMIT Heatex tube 2

1900

NORMIT Heatex tube 3

2200

NORMIT Heatex tube 4

2600


Кожухотрубчатые теплообменники - наиболее распространенная конструкция теплообменной аппаратуры. По ГОСТ 9929 стальные кожухотрубчатые теплообменные аппараты изготовляют следующих типов: ТН - с неподвижными трубными решетками; ТК - с температурным компенсатором на кожухе; ТП - с плавающей головкой; ТУ - с U-образными трубами; ТПК - с плавающей головкой и компенсатором на ней (рис. 2.19).

В зависимости от назначения кожухотрубчатые аппараты могут быть теплообменниками, холодильниками, конденсаторами и испарителями; их изготовляют одно- и многоходовыми.

Кожухотрубчатый аппарат с неподвижной трубной решеткой (типа ТН) представлен на рис. 2.20. Такие аппараты имеют цилиндрический кожух 1 , в котором расположен трубный пучок2 ; трубные решетки3 с развальцованными трубками крепятся к корпусу аппарата. С обоих концов теплообменный аппарат закрыт крышками4 . Аппарат оборудован штуцерами5 для теплообменивающихся сред; одна среда идет по трубкам, другая проходит через межтрубное пространство.

Теплообменники этой группы изготовляют на условное давление 0,6…4,0 МПа, диаметром 159…1200 мм, с поверхностью теплообмена до 960 м2; длина их до 10 м, масса до 20 т. Теплообменники этого типа применяют до температуры 350 °С.

Предусмотрены различные варианты материального исполнения конструктивных элементов теплообменных аппаратов. Корпус аппарата изготовляют из сталей ВСтЗсп, 16ГС или биметаллическим с защитным слоем из сталей 08X13, 12Х18Н10Т, 10Х17Н13М2Т. Для трубного пучка применяют трубы из сталей 10, 20 и Х8 с размерами 25×2, 25×2,5 и 20×2 мм, из высоколегированных сталей 08X13, 08Х22Н6Т, 08Х18Н10Т, 08Х17Н13М2Т с размерами 25×1,8 и 20×1,6 мм, а также трубы из алюминиевых сплавов и латуни. Трубные решетки изготовляют из сталей 16ГС, 15Х5М, 12Х18Н10Т, а также биметаллическими с наплавкой высоколегированного хромоникелевого сплава или слоя латуни толщиной до 10 мм.

Рис. 2.20. Схема одноходового теплообменного аппарата типа ТН(вертикальное исполнение):

1 - кожух; 2 - трубки; 3 - трубная решетка; 4 - крышки; 5 - штуцера

Рисунок 2.19. Основные типы кожухотрубчатых теплообменных аппаратов:

а) – с неподвижными решетками (ТН) или с компенсатором на кожухе (ТК); б) – с плавающей головкой; в) – с U-образными трубками

Особенностью аппаратов типа ТН является то, что трубы жестко соединены с трубными решетками, а решетки с корпусом. В связи с этим исключена возможность взаимных перемещений труб и кожуха; поэтому аппараты этого

типа называют еще теплообменниками жесткой конструкции. Некоторые варианты крепления трубных решеток к кожуху в стальных приведены на рис. 2.21.

Трубы в кожухотрубчатых теплообменниках размещают так, чтобы зазор между внутренней стенкой кожуха и поверхностью, огибающей пучок труб, был минимальным; в противном случае значительная часть теплоносителя может миновать основную поверхность теплообмена. Для уменьшения количества теплоносителя, проходящего между трубным пучком и кожухом, в этом пространстве устанавливают специальные заполнители, например приваренные к кожуху продольные полосы (рис. 2.22а ) или глухие трубы, которые не проходят через трубные решетки и могут быть расположены непосредственно у внутренней поверхности кожуха (рис. 2.22б ).

Рис. 2.21. Некоторые варианты крепления трубных решеток к кожуху аппарата

В кожухотрубчатых теплообменниках для достижения больших коэффициентов теплоотдачи необходимы достаточно высокие скорости теплоносителей: для газов 8…30 м/с, для жидкостей не менее 1,5 м/с. Скорость теплоносителей обеспечивают при проектировании соответствующим подбором площади сечения трубного и межтрубного пространства.

Если площадь сечения трубного пространства (число и диаметр труб) выбрана, то в результате теплового расчета определяют коэффициент теплопередачи и теплообменную поверхность, по которой рассчитывают длину трубного пучка. Последняя может оказаться больше длины серийно выпускаемых труб. В связи с этим применяют многоходовые (по трубному пространству) аппараты с продольными перегородками в распределительной камере. Промышленностью выпускаются двух-, четырех- и шестиходовые теплообменники жесткой конструкции.

Двухходовой горизонтальный теплообменник типа ТН (рис. 2.23) состоит из цилиндрического сварного кожуха 5 , распределительной камеры11 и двух крышек4 . Трубный пучок образован трубами7 , закрепленными в двух трубных решетках3 . Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера1 ,12 ) и межтрубного (штуцера2 ,10 ) пространств. Перегородка13 в распределительной камере образует ходы теплоносителя по трубам. Для герметизации узла соединения продольной перегородки с трубной решеткой использована прокладка14 , уложенная в паз решетки3 .

Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки6 , обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве. На входе теплообменной среды в межтрубное пространство предусмотрен отбойник9 - круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изнашивания.

Достоинством аппаратов этого типа является простота конструкции и, следовательно, меньшая стоимость.

Однако им присущи два крупных недостатка. Во-первых, очистка межтрубного пространства подобных аппаратов сложна, поэтому теплообменники такого типа применяются в тех случаях, когда среда, проходящая через межтрубное пространство, является чистой, не агрессивной, т. е. когда нет необходимости в чистке.

Во-вторых, существенное различие между температурами трубок и кожуха в этих аппаратах приводит к большему удлинению трубок по сравнению с кожухом, что обусловливает возникновение температурных напряжений в трубной решетке 5 , нарушает плотность вальцовки труб в решетке и ведет к попаданию одной теплообменивающейся среды в другую. Поэтому теплообменники этого типа применяют при разнице температур теплообменивающихся сред, проходящих через трубки и межтрубное пространство не более 50 °C и при сравнительно небольшой длине аппарата.

Теплообменные аппараты с температурным компенсатором типа ТК (рис. 2.24) имеют неподвижные трубные решетки и снабжены специальными гибкими элементами для компенсации различия в удлинении кожуха и труб, возникающего вследствие различия их температур.

Вертикальный кожухотрубчатый теплообменник типа ТК отличается от теплообменника типа ТН наличием вваренного между двумя частями кожуха 1 линзового компенсатора2 и обтекателя3 (рис. 2.25). Обтекатель уменьшает гидравлическое сопротивление межтрубного пространства такого аппарата; обтекатель приваривают к кожуху со стороны входа теплоносителя в межтрубное пространство.

Наиболее часто в аппаратах типа ТК используют одно- и многоэлементные линзовые компенсаторы), изготовляемые обкаткой из коротких цилиндрических обечаек. Линзовый элемент, показанный на рисунке 2.25б , сварен из двух полулинз, полученных из листа штамповкой. Компенсирующая способность линзового компенсатора примерно пропорциональна числу линзовых элементов в нем, однако применять компенсаторы с числом линз более четырех не рекомендуется, так как резко снижается сопротивление кожуха изгибу. Для увеличения компенсирующей способности линзового компенсатора он может быть при сборке кожуха предварительно сжат (если предназначен для работы на растяжение) или растянут (при работе на сжатие).

При установке линзового компенсатора на горизонтальных аппаратах в нижней части каждой линзы сверлят дренажные отверстия с заглушками для слива воды после гидравлических испытаний аппарата.

Рис. 2.24. Вертикальный кожухотрубчатый теплообменник типа ТК