Интенсивность теплового облучения человека регламентируется, исходя из субъективного ощущения человеком энергии облучения. Согласно требованиям нормативных документов интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов не должна превышать :

− 35 Вт/м 2 при облучении более 50% поверхности тела;

− 70 Вт/м 2 при облучении от 25 до 50% поверхности тела;

− 100 Вт/м 2 при облучении не более 25% поверхности тела.

От открытых источников (нагретые металл и стекло, открытое пламя) интенсивность теплового облучения не должна превышать 140 Вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Санитарные нормы ограничивают также температуру нагретых поверхностей оборудования в рабочей зоне, которая не должна превышать 45°С, а для оборудования, внутри которого температура близка к 100°С, температура на его поверхности должна быть не выше 35°С .

В производственных условиях не всегда возможно выполнить нормативные требования. В этом случае должны быть предусмотрены мероприятия по защите рабочих от возможного перегрева :

дистанционное управление ходом технологического процесса;

− воздушное или водо-воздушное душирование рабочих мест;

− устройство специально оборудованных комнат, кабин или рабочих мест для кратковременного отдыха с подачей в них кондиционированного воздуха;

− использование защитных экранов, водяных и воздушных завес;

− применение средств индивидуальной защиты, спецодежды, спецобуви и др.

Одним из самых распространенных способов борьбы с тепловым излучением является экранирование излучающих поверхностей. Различают экраны трех типов :

1. Непрозрачные – к таким экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др. В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника.

2. Прозрачные – это экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы. В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран.


3. Полупрозрачные – к ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

По принципу действия экраны подразделяются на :

− теплоотражающие;

− теплопоглощающие;

− теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др. .

Эффективность защиты от теплового излучения с помощью экранов оценивается по формуле :

где Q бз – интенсивность теплового излучения без применения защиты, Вт/м 2 , Q з – интенсивность теплового излучения с применением защиты, Вт/м 2 .

Кратность ослабления теплового потока, т, защитным экраном определяется по формуле:

где Q бз − интенсивность потока излучателя (без использования защитного экрана), Вт/м 2 , Q з − интенсивность потока теплового излучения экрана, Вт/м 2 .

Коэффициент пропускания экраном теплового потока, τ, равен:

τ = 1/m . (2.8)

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

Воздушный оазиссоздают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 – 0,4 м/с .

Воздушные завесысоздают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10 – 15 м/с) под некоторым углом навстречу холодному потоку .

Воздушные душиприменяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м 2) .

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае, у рабочего возникают неприятные ощущения (например, шум в ушах).

Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ) .

Расчет системы воздушного душирования на рабочем месте заливщика металла

Воздушное душирование - одно из наиболее эффективных мер борьбы с лучистым теплом, а также с токсическими газами и парами, выделяющимися при работе у кузнечных молотов и прессов. Подаваемый сверху через специальные устройства подогретый (зимой) и охлажденный (летом) воздух снабжает рабочего свежим увлажненным воздухом, а регулировкой скорости движения воздуха можно добиться и частичного понижения температуры воздуха у рабочего места. Иногда воздух подается на рабочее место посредством гибких прорезиненных шлангов от передвижной воздушной душирующей установки. Внешний вид душирующей установки изображен на рис. 3.4.

Рисунок 3.4 - Душирующая установка

Расчёт воздушного душа проведём по методу Злобинского Б.М.

Расчет воздушных душей сводится к определению диаметра душевого патрубка и параметров выходящего из него воздуха.

Диаметр поперечного сечения струи рассчитывается по формуле 2:

где -коэффициент турбулентности, зависящий от формы выходного сечения (0,06 - 0,12). Примем =0,12.

х -расстояние от места выхода струи от патрубка до рабочего места. Примем x = 2 м.

d 0 - диаметр выходного сечения трубы. Примем d 0 =0,7.

Скорость, с которой воздух выходит из патрубка, рассчитывается по формуле:

где площ - средняя скорость воздуха на рабочей площадке. Эта скорость не должна превышать 0,3 м/с. Примем площ =0,3 м/с;

b - коэффициент, изменяющийся от 0,05 до 1 в зависимости от отношения. Примем d р.пл. =2 м, тогда:

Подставим полученные значения в (3) и получим, что

Необходимая температура на выходе из патрубка определяется по формуле:

где t o.c. - температура окружающей среды, она составляет 20-25 0 С. Примем 22,5 0 С.

t cp - средняя нужная температура воздуха на плавильной площадке. По нормам СанПиН 2.2.4.548-96 допустимая температура на площадке 19-21 0 С, примем 20 0 С.

С - коэффициент, зависящий как и коэффициент b от отношения и изменяющийся от 0,345 до 0,22. Примем С=0,25.

Таким образом, для того, чтобы температура на плавильной площадке была равна 20 0 С предусмотрена струя воздуха d=2,05 м при t патр =19,3 0 С, которая подается на плавильную площадку вентилятором с скоростью 0,15 м/с и производительностью 1800 м 3 /ч.

Расчет экономической эффективности установки системы воздушного душирования типа ВД-1800 на рабочем месте заливщика металла будет произведен в организационно-экономическом разделе дипломного проекта.

Заболевания, вызываемые воздействием нагревающего микроклимата литейных (горячих) цехов и их предупреждение

Нагревающий микроклимат -- сочетание параметров, при котором имеет место изменение теплообмена человека с окружающей средой, проявляющееся в накоплении тепла в организме (> 2 Вт) и/или в увеличении доли потерь тепла испарением влаги (> 30 %). Воздействие нагревающего микроклимата также вызывает нарушение состояния здоровья, снижение работоспособности и производительности труда.

Работа в таких условиях может привести к дискомфортным теплоощущениям, значительному напряжению процессов терморегуляции, а при большой тепловой нагрузке -- и к нарушению здоровья (перегреванию).

Такого рода микроклимат создается в помещениях, где технология связана со значительными выделениями тепла в окружающую среду, то есть когда производственные процессы идут при высокой температуре (обжиг, прокаливание, спекание, плавка, варка, сушка). Источниками тепла являются нагретые до высокой температуры поверхности оборудования, ограждений, обрабатываемые материалы, остывающие изделия, выбивающиеся через неплотности оборудования горячие пары и газы. Выделение тепла определяется также работой машин, станков, вследствие чего механическая и электрическая энергия переходит в тепловую.

Воздушным душем называют поток воздуха, направленный на ограниченное рабочее место или непосредственно на рабочего.

Особенно эффективно применение воздушных душей при тепловом облучении рабочего. В таких случаях воздушный душ устраивают на месте наиболее длительного пребывания человека, а если в работе предусмотрены кратковременные перерывы для отдыха, то и на месте отдыха.

Обдувать воздухом следует верхние части туловища, как наиболее чувствительные к воздействию теплового облучения.

Скорость и температуру воздуха на рабочем месте при применении воздушных душей назначают в зависимости от интенсивности теплового облучения человека, длительности непрерывного пребывания его под облучением и температуры окружающего воздуха.

Веерный агрегат типа ВА-1

1 — электродвигатель;
2 — обечайка;
3 —сетка;
4 — осевой вентилятор;
5 — конфузор;
6 — обтекатель;
7 — пневматическая форсунка;
8 — направляющие лопатки

Воздушное душирование следует предусматривать на постоянных рабочих местах с интенсивностью облучения 350 Вт/м2 и более. При этом на человека можно направлять поток воздуха со скоростью о=0,5...3,5 м/с и температурой 18—24 °С в зависимости от периода1 года и интенсивности физической нагрузки.

Конструктивное выполнение воздушных душей.

Воздух, выходящий из душирующего патрубка, должен омывать голову и туловище человека с равномерной скоростью и иметь одинаковую температуру.

Ось воздушного потока может быть направлена на грудь человека горизонтально или сверху под углом 45° при обеспечении на рабочем месте заданных температур и скоростей движения воздуха, а также в лицо (зону дыхания) горизонтально или сверху под углом 45° при обеспечении допустимых концентраций вредных выделений.

Расстояние от душирующего патрубка до рабочего места должно быть не менее 1 м при минимальном диаметре патрубка 0,3 м. Ширина рабочей площадки принимается равной 1 м.

Конструкция агрегатов ВА-1

По конструкции душирующие установки подразделяются на стационарные и передвижные.

Веерный агрегат типа ВА-1 состоит из чугунной станины, на которой смонтирован осевой вентилятор № 5 типа МЦ с электродвигателем, обечайки с коллектором и сеткой, конфузора с направляющими лопатками и обтекателем, пневматической форсунки типа ФП-1 или ФП-2 и трубопроводов с арматурой и гибкими шлангами для подвода воды и сжатого воздуха. Агрегат изготовляется с поворотом вентилятора вокруг оси станины до 60° и подъемом ствола по вертикали на 200—600 мм.

Кроме веерных агрегатов тйпа ВА применяется поворачивающийся агрегат ПАМ.-24 в виде осевого вентилятора диаметром 800 мм с электродвигателем на одном валу. Производительность агрегата 24 000 м 3 /ч при дальнобойности струи 20 м. Агрегат снабжен пневматической форсункой для распыления воды в потоке воздуха.

Стационарные душирующие установки подают к душирующим патрубкам как необработанный, так и обработанный (подогретый, охлажденный и увлажненный) наружный воздух. Передвижные установки подают на рабочее место воздух помещения. В подаваемом ими воздушном потоке может распыляться вода. В этом случае капельки воды, попадая на одежду и открытые части тела человека, испаряются и вызывают дополнительное охлаждение.

Душирование фиксированных рабочих мест может осуществляться душирующими патрубками различных типов. Патрубки ГІПД имеют поджатое выходное сечение, шарнирное соединение для изменения направления потока воздуха в вертикальной плоскости и поворотное устройство для изменения направления потока в горизонтальной плоскости в пределах 360°.

Регулирование направления воздушного потока в патрубках ПД осуществляется в вертикальной плоскости поворотом направляющих лопаток, а в горизонтальной плоскости при помощи поворотного устройства. Патрубки ПД могут применяться как с форсунками для пневматического распыления воды, так и без них. Патрубки должны устанавливаться на высоте 1,8—1,9 м от пола (до нижней кромки).

Воздушный душ его назначение и области применения Воздушным душем называют поток воздуха направленный на ограниченное рабочее место или непосредственно на человека. Во многих случаях когда работа производится в обстановке ощутимого теплового излучения а средства общей вентиляции оказываются все же недостаточными для того чтобы поддерживать требуемую температуру и влажность воздуха и устранить нарушение терморегуляции нормального теплообмена между телом человека и окружающей средой воздушные души должны несколько корректировать...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Раздел XI . Воздушные души

Лекция№24. Проектирование воздушных душей

План

24.1. Воздушный душ, его назначение и области применения.

24.3. Расчет воздушных душей.

24.1. Воздушный душ, его назначение и области применения

Воздушным душем называют поток воздуха, направленный на ограниченное рабочее место или непосредственно на человека.

В противоположность общей вентиляции, которая ставит своей задачей поддерживать определенные условия воздушной среды во всем помещении, местный приток имеет целью создание местных условий воздушной среды на ограниченном участке помещения. Такими участками являются или места наиболее длительного пребывания в них рабочих, или места отдыха.

Таким образом, назначение воздушного душа заключается в том, чтобы в пространстве, ограниченной зоной действия потока, поддерживать особые, отличные от господствующих во всем помещении условий воздушной среды. Эти условия должны удовлетворять определенным, заранее поставленным гигиеническим и физиологическим требованиям.

Воздушное душирование применяют для создания на постоянных рабочих местах требуемых метеорологических условий при тепловом облучении и при открытых производственных процессах, если технологическое оборудование, выделяющее вредные вещества, не имеет укрытий или местной вытяжной вентиляции.

Воздушный душ устраивают в следующих случаях:

  1. при нецелесообразности средствами вентиляции получать во всем объеме помещения надлежащие санитарно-гигиенические условия;
  2. при наличии в помещении небольшого количества рабочих со строго фиксированными рабочими местами;
  3. при наличии источников лучистого тепла, интенсивностью более 140 Вт/м 2 .
  4. для предотвращения распространения вредных веществ на постоянные рабочие места при открытых технологических процессах, сопровождающихся выделением вредных веществ, и невозможности устройства укрытия или местной вытяжной вентиляции.

Во многих случаях, когда работа производится в обстановке ощутимого теплового излучения, а средства общей вентиляции оказываются все же недостаточными, для того чтобы поддерживать требуемую температуру и влажность воздуха и устранить нарушение терморегуляции (нормального теплообмена между телом человека и окружающей средой), воздушные души должны несколько корректировать условия воздушной среды. Сюда нужно отнести металлургические и машиностроительные заводы (где души необходимы у промышленных печей, прокатных станов, молотов, прессов и т. д.), стекольные заводы, красильные фабрики, хлебозаводы и т. п.

Таким же коррективом воздушные души должны служить при широко применяемом в настоящее время естественном вентилировании (аэрации) современных цехов. Это может иметь место в тех случаях, когда естественный приток, обусловливаемый при аэрации расположением приточных отверстий (фрамуг и пр.), не может в достаточной степени обслужить рабочие места (кузницы, литейные, термические и другие цехи).

Роль воздушных душей при вентилировании путем аэрации приобретает особое значение и в силу того, что естественный приток вводится без предварительной подготовки (без подогрева или охлаждения и т. д.), в то время как для воздушных душей такая предварительная подготовка может быть осуществлена с небольшими затратами.

В промышленных цехах, спроектированных с учетом аэрации, расход воздуха для воздушных душей составляет незначительный процент от естественного воздухообмена.

И наконец, в горячих цехах в районах с высокой наружной температурой, когда общая вентиляция (естественная или механическая) поддерживает в цехах температуру воздуха на 3—5° выше наружной, воздушные души, устраиваемые на рабочих местах, создают условия, близкие к комфортным, причем наружный воздух для них подвергается предварительной обработке (охлаждению).

При проектировании воздушного душирования должны быть приняты меры, предотвращающие сдувание производственных вредных выделений на близко расположенные постоянные рабочие места. Воздушная струя должна быть направлена так, чтобы по возможности исключалось подсасывание ею горячего или загрязненного газами воздуха.

Для воздушного душирования рабочих мест следует предусматривать воздухораспределители, обеспечивающие минимальную турбулизацию воздушной струи и имеющие устройства для изменения направления струи в горизонтальной плоскости на угол 180 о и в вертикальной плоскости на угол 30 о .

При проектировании воздушного душирования наружным воздухом следует принимать расчетные параметры А для теплого периода года и Б для холодного периода.

Воздушное душирование при тепловом облучении должно обеспечивать на местах постоянного пребывания работающих температуру и скорость движения воздуха в соответствии с приложением Г табл. Г.1 СП 60.13330.2012.

24.2. Конструктивные решения воздушных душей

Воздушные души классифицируются по нескольким признакам:

  1. По характеру распределения потока:
  • с рассосредоточенной подачей воздуха;
  • с сосредоточенной подачей воздуха;

Сосредоточенная подача применяется только когда рабочее место строго фиксировано.

  1. По качеству подаваемого воздуха:
  • с обработкой подаваемого воздуха;
  • без обработки подаваемого воздуха.
  1. По месту забора воздуха:
  • с забором наружного воздуха;
  • с забором внутреннего воздуха (рециркуляционные).

При устройстве воздушного душа воздух подвергается той или иной обработке. Может меняться температура воздушного потока, относительная влажность, концентрация газов, скорость движения воздуха.

При борьбе с лучистым теплом бывает достаточно увеличить скорость воздушного потока до тех пор, пока температура окружающего воздуха не превышает 30 о . При t > 30 о увеличение скорости потока не может обеспечить нормальное самочувствие организма.

Системы, подающие воздух к воздушным душам, проектируются отдельными от систем другого назначения.

Расстояние от места выпуска воздуха до рабочего мета следует принимать не менее 1м при минимальном диаметре патрубка 0,3м, а воздушный поток должен быть направлен:

  • на грудь человека горизонтально или сверху под углом до 45 о для обеспечения на рабочем месте нормируемых температур и скорости движения воздуха;
  • в лицо (зону дыхания) горизонтально или сверху под углом до 45 о для обеспечения на рабочем месте допустимых концентраций по газу и пыли; при этом должны обеспечиваться нормируемые температура и скорость движения воздуха;

Если невозможно достигнуть нормируемой температуры воздуха в душирующей струе на рабочем месте повышением скорости движения воздуха, следует устанавливать форсунки тонкого распыла воды в потоке подаваемого воздуха на выходе из воздухораздающего устройства или применять адиабатическое охлаждение воздуха при централизованной обработке его в приточных камерах. Установки с применением искусственного холода требуют значительных эксплуатационных и капитальных затрат, поэтому искусственное охлаждение воздуха следует применять только в случаях, когда нормируемая температура воздуха на рабочем месте ниже температуры приточного воздуха, полученной его адиабатическим охлаждением.

При проектировании систем воздушного душирования, как правило, следует применять воздухораспределители УДВ. Воздухораспределители обычно устанавливают на высоте не менее 1,8м от пола (до их нижней кромки). Для душирования группы постоянных рабочих мест могут быть использованы воздухораспределители ВГК и ВСП.

Унифицированные душирующие воздухораспределители УДВ рекомендуются к предпочтительному применению. Они разработаны в следующих исполнениях: нижний подвод воздуха без увлажнения УДВн и с увлажнением УДВну; верхний подвод воздуха без увлажнения УДВв и с увлажнением УДВув. Душирование фиксированных рабочих мест может осуществляться душирующими патрубками различного типа: ППД, ПДн, ПДв, ПДУ, ВП.

При тепловом облучении постоянных рабочих мест нагретыми поверхностями интенсивностью от 140 до 350 Вт/м 2 предусматривается установка вентиляторов — вееров. При применении вентиляторов — вееров следует обеспечивать поддержание допустимой ГОСТ 12.1.005-88 температуры воздуха увеличивая скорость на 0,2м/с более указанной в этом ГОСТе. Для этой цели душирование рабочих мест внутренним воздухом осуществляется поворотными аэраторами ПАМ-24. Расстояние от аэратора до рабочего места определяется конкретными условиями, максимальное расстояние равно 20м.

В помещениях общественных, административно-бытовых и производственных зданий, сооружаемых в lV климатическом районе, а также при обосновании и в других климатических районах, при избытках явной теплоты более 23 Вт/м 3 следует предусматривать дополнительно к общеобменной приточной вентиляции установку потолочных вентиляторов для увеличения скорости движения воздуха на рабочих местах или на отдельных участках в теплый период года. Для этой цели используют потолочные вентиляторы ВПК-15 "Союз", "Зангезур-3", "Зангезур-5".Применение потолочных вентиляторов не следует ограничивать районами с жарким климатом. Их рационально применять и в районах с умеренным климатом.

24.3. Расчет воздушных душей

Достижение нормируемых параметров воздуха определяется расчетом по предельным (осевым) значениям параметров воздушной струи на постоянном рабочем месте.

За расчетные величины на постоянном рабочем месте рекомендуется принимать:

Температуру смеси воздуха в воздушной струе - равной нормируемой по приложению Г табл. Г.1 СП 60.13330.2012, при тепловом облучении интенсивностью 140 Вт/м 2 и более. Для промежуточных значений поверхностей плотности лучистого теплового потока температуру смеси воздуха в душирующей струе следует определять интерполяцией.

Минимальную концентрацию вредных веществ в воздушной струе - равной ПДК по приложению 2 ГОСТ 12.1.005-88;

Скорость движения воздушной струи - соответствующей температуре смеси воздуха в душирующей струе по приложению Е СНиП41- 01 - 2003 при тепловом облучении интенсивностью 140 Вт/м 2 и более.

При расчете определяется типоразмер душирующего воздухораспределителя F o , скорость выпуска воздуха и расход воздуха на воздухораспределитель L o . Температура приточного воздуха на выходе из воздухораспределителя t o должна быть меньше или равной нормируемой.

Расчет производится из условия обеспечения нормируемых параметров воздуха на постоянном рабочем месте по следующим формулам:

а) при тепловыделениях и t норм > t o , полученной при адиабатическом охлаждении воздуха или без охлаждения,

; (24.1)

, (24.2)

где, х — расстояние от воздухораспределителя до рабочего места, м; т , п — соответственно скоростной и температурный коэффициенты воздухораспределителя (принимаются по справочной литературе);

б) при тепловыделениях и t норм < t o , полученной при адиабатическом охлаждении,

; (24.3)

; (24.4)

T o = t норм , (24.5)

т.е. требуется неискусственное охлаждение воздуха;

в) при газо- и пылевыделениях рассчитывается по формуле (24.2),а

, (24.6)

где, ПДК — предельно допустимая концентрация вредных веществ на рабочем месте в соответствии с приложением 2 ГОСТ 12.1.005-88; Z рз и Z о — концентрация вредных веществ в воздухе рабочей зоны и в приточном воздухе на выходе из воздухораспределителя.

Если заданы величины т , п , F o и х следует определять: при по формуле (24.4); t o при по формуле (24.5); при по формуле (24.2); t o при по формуле

. (24.7)

Другие похожие работы, которые могут вас заинтересовать.вшм>

9215. СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ 339.13 KB
Одним из важнейших параметров полета летательного аппарата (ЛА) является его скорость. В основу принципа действия современных бортовых средств измерения параметров движения летательного аппарата (ЛА) в воздушной среде положен аэрометрический метод. С развитием авиационной техники возросли требования к точности измерения аэрометрических параметров.
2191. КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ ВОЗДУШНЫХ ЛИНИЙ СВЯЗИ 1.05 MB
Опоры воздушных линий связи должны обладать достаточной механической прочностью сравнительно продолжительным сроком службы быть относительно легкими транспортабельными и экономичными. До последнего времени на воздушных линиях связи применялись опоры из деревянных столбов. Затем начали широко применяться железобетонные опоры.
17174. Моделирование и расчет воздушных и тепловых потоков в системах охлаждения двигателей 4.35 MB
Компьютерное моделирование газодинамических задач течения воздушных потоков по каналам системы охлаждения автомобиля с использованием современных пакетов конечного элементного анализа Ansys и SolidWorks.
12423. МОДЕРНИЗАЦИЯ КОМПРЕССОРНОЙ УСТАНОВКИ ДЛЯ ВОЗДУШНЫХ ВЫКЛЮЧАТЕЛЕЙ НА ТАШТЭС НАПРЯЖЕНИЕМ 110 И 220 кВ НА ОСНОВЕ УЛУЧШЕНИЯ РЕЖИМОВ АВТОМАТИЗАЦИИ 506.97 KB
Анализ систем сжатого воздуха Сжатый воздух представляет собой воздух который хранится и используется под давлением превышающим атмосферное. Системы сжатого воздуха принимают определенную массу атмосферного воздуха занимающую определенный объем и сжимают ее до меньшего объема. На системы сжатого воздуха приходится до 10 промышленного потребления электроэнергии или около 80 ТВтч год в 15 государствах – членах ЕС.
13720. Проектирование РЭС 1.33 MB
Результатом проектирования как правило служит полный комплект документации содержащий достаточные сведения для изготовления объекта в заданных условиях. По степени новизны проектируемых изделий различают следующие задачи проектирования: частичная модернизация существующего РЭС изменение его параметров структуры и конструкции обеспечивающая сравнительно небольшое несколько десятков процентов улучшение одного или нескольких показателей качества для оптимального решения тех же или новых задач; существенная модернизация которая...
4768. Проектирование JK-триггера 354.04 KB
Состояние триггера принято определять по значению потенциала на прямом выходе. Структура универсального триггера. Принцип действия устройства. Выбор и обоснование типов элементов. Корпусы микросхем выбор в библиотеках DT. Проектирование универсального триггера в САПР DipTrce. Технологический процесс
8066. Логическое проектирование 108.43 KB
Логическое проектирование базы данных Логическое проектирование базы данных процесс создания модели используемой на предприятии информации на основе выбранной модели организации данных но без учета типа целевой СУБД и других физических аспектов реализации. Логическое проектирование является вторым...
377. ПРОЕКТИРОВАНИЕ МОЛНИЕЗАЩИТЫ 1.41 MB
Прямой удар молнии поражение молнией непосредственный контакт канала молнии с объектом сопровождающийся протеканием по нему тока молнии. Вторичное проявление молнии наведение высокого потенциала на изолированных от земли металлических конструкциях вызванное разрядами молнии. Занос высоких потенциалов перенесение в здание или сооружение по подземным наземным и надземным металлическим коммуникациям электрических потенциалов возникающих при прямых и близких ударах молнии. Молниезащита комплекс мероприятий направленных на...
6611. Проектирование переходов ТП 33.61 KB
Исходная информация: маршрут обработки детали, оборудование, приспособления, последовательность переходов в операциях, размеры, допуски, припуски на обработку.
3503. Проектирование ИС учета ТМЦ 1007.74 KB
Объектом исследования является общество с ограниченной ответственностью “Мермад”. Предметом исследования является рассмотрение отдельных вопросов, сформулированных в качестве задач по учету ТМЦ.

ВД наиболее эффективное мероприятие для создания на постоянных рабочих местах или участках, на которых параметры воздуха отличаются от средних в рабочей зоне, требуемых по санитарно-гигиеническим нормам метеорологических условий температуры, влажности и скорости движения воздуха. ВД используется в следующих случаях:

Для борьбы с лучистой теплотой

Для борьбы с конвективной теплотой при невозможности обеспечения нормативных параметров общеобменной вентиляции

Для борьбы с газовыми выбросами при невозможности устройства локализующей вентиляции

Наиболее распространенно ВД в литейных, кузнечных и термических цехах, там где тепловой поток составляет 175-350 Вт/м2 и более.

Душирование рабочих мест осуществляется в зависимости от поверхностной плотности лучистого теплового потока внутренним и наружным воздухом. Если плотность лучистого теплового потока находится в пределах 175-380 Вт/м 2 в пределах рабочего места площадью более 0,2 м2 применяется внутренний воздух. При этом температура и скорость воздуха на рабочем месте должны соответствовать СНиПу.

ВД работающие на внутреннем воздухе называются аэраторами. Их основными элементами являются:

1 осевой вентилятор с электродвигателем на одном валу

2 автоматическое поворотное устройство до 600

3 пневматическая форсунка с подводом воды

Это ВД используется для обслуживания площадок, на которых находится несколько человек. Поворотные аэраторы обеспечивают относительно равномерные скорости в потоке воздуха и более широкую зону обслуживания. Однако при температуре больше 280 их охлаждающий эффект значительно снижается. При тепловом потоке 1800 Вт/м2 применяется ВД с использованием экранов.

В состав ВД работающего на наружном воздухе входят:

1 Приточная камера или центральный кондиционер с камерой орошения(может работать в любом режиме)

2 Сети воздуховодов, которые могут быть в подпольных каналах и по цеху

3 Душирующие патрубки, которые устанавливаются от пола на расстоянии 1,8 м до нижней кромки патрубка. Систему ВД нельзя совмещать с системой приточной общеобменной вентиляции. Душирующие патрубки могут быть разной конструкции. Сам патрубок поворотный.

1 воздуховод

Особенности расчета:

Расчет ВД сводится к:

1 выбору режима обработки воздуха

2 определению параметров подаваемого воздуха- скорости и температуры.

3 определению размеров душирующего патрубка F0

4 подбору технологического оборудования

Существующий метод расчета основывается на решении задачи оптимизации работы ВД по расходу энергоресурсов и закономерностей приточной струи. При выходе их воздухораспределителя душирующего патрубка создается компактная струя. Зоной действия струи считается зона шириной более 1 метра, а скоростной границей считается зона 50% от значения скорости υх.


методика расчета проф. ПВ Участкина- первоначально определяется температурный критерий:

tрз- температура воздуха в рабочей зоне

tрм- нормируемая температура на рабочем месте

t0- температура воздуха, которая получается при адиабатном охлаждении наружного воздуха, то есть минимальная температура потока, которая может быть получена без использования искусственного холода

tад- температура адиабатной обработки воздуха

Δt-нагрев воздуха вентилятором=0,5-1,50С

При Pt<1 принимается адиабатное охлаждение

1 Pt≤0,6 в этом случае температура воздуха на рабочем месте больше температуры t0. В этом режиме установка душирования будет работать без искусственного холода, используя адиабатное охлаждение. Для вентиляции рабочего места используется основной участок рабочей струи и тогда:

n- коэффициент характеризующий изменение температуры по оси струи

х- расстояние от выпуска до рабочего места, это расстояние не должно быть меньше 1м.

F0- площадь сечения душирующего патрубка

Скорость движения воздуха на выходе из патрубка определятся как:

m- коэффициент характеризующий изменение скорости по оси струи

Для скорости на рабочем месте с учетом зоны струи:

Температура приточного воздуха определяется из критерия Рt:

0,6- учитывает среднее значение параметров температуры в струе

Количество воздуха выходящего из патрубка:

2 Pt≥1 достижение требуемой температуры притока возможно только с искусственным охлаждением. Для экономии энергоресурсов рабочее место следует душировать начальным участком приточной струи. На начальном участке параметры скорости и температуры неизменны и равны начальным. В этом случае рекомендуется относительное расстояние :

Размеры душирующего патрубка определяются по зависимости:

Так как на начальном участке υх=υ0, а υрм=0,7υ0, то скорость выхода воздуха из ВР:

t0= tрм/0.6 (7)

При значении Pt=1 патрубки рассчитанные по вышеизложенным формулам получаются очень большими. В этих случаях необходимо искусственное охлаждение воздуха и вести расчет по формулам, когда Pt>1

Температуру воздуха выходящего из приточного патрубка необходимо определить по формуле:

5. Абсорбционная холодильная машина:

Рабочий цикл в этих машинах осуществляется за счет тепловой энергии. Работает на смеси двух веществ, из которых одно является хладагентом (ХА), а второе абсорбентом, то есть веществом, поглощающим или растворяющим пары ХА.

Принципиальная схема:

1 кипятильник

2 конденсатор

3регулирующий вентиль

4 испаритель

5 адсорбер

6 регулирующий вентиль

7 насос для перекачки смеси

Как правило, в качестве абсорбера применяется вод, а в качестве ХА аммиак или бромистый литий.

Принцип работы:

В кипятильнике богатая ХА смесь, подогревается либо паром, либо эл. энергией. при подогреве пары аммиака выделяются из смеси, причем давление в кипятильнике растет до величины давления конденсации. Далее пары аммиака проходят цепь превращений:

Конденсируется в жидкое состояние

Дросселируется в регулирующем вентиле 3 с падением давления до начальной величины и температуры

Затем жидкий аммиак поступает в испаритель 4, из него пары аммиака поступают в 5. Абсорбер, как и конденсат, охлаждается водой, и в нем водоаммиачная смесь интенсивно поглощает пары аммиака, обогащаясь дополнительным количеством газа.

Эта смесь насосом 7 перекачивается в кипятильник 1, в тоже время обедненная водоаммиачная смесь через 2-ой регулирующий вентиль перетекает из кипятильника в абсорбер. Таким образом, в абсорбционной машине можно различить 2 контура движения:

Для аммиака: кипятильник – КД - регулирующий вентиль 3-испаритель-абсорбер

Для водоаммиачной смеси: кипятильник – регулирующий клапан 6 – абсорбер – насос - кипятильник

6. Наружный воздух независимо от нагрузки в помещении обрабатывается так, чтобы значения параметров температуры и влажности были постоянными в любой период года, то есть фиксируется точка за камерой орошения. Для обработки воздуха используется “мокрый аппарат”. Это аппарат, в котором производится термовлажностная обработка воздуха. Это может быть камера орошения или поверхностный орошаемый воздухоохладитель. При подаче достаточного количества воды процесс заканчивается при j = 85 ¸90 %, то есть при реальных процессах обработки воздуха в оросительных камерах конечная влажность его не достигает значения j = 100 %. Причиной этого является изменение температуры воды и кратковременный контакт воздуха с водой.

Первый узел регулирования фиксирует параметры наружного воздуха после “ мокрого аппарата”. Условно это является точкой камеры орошения и косвенно поддерживает влажность помещения.