Обучение решению текстовых задач играет важную роль в формировании математических знаний. Текстовые задачи дают большой простор для развития мышления учащихся. Обучение решению задач – это не только обучение технике получения правильных ответов в некоторых типичных ситуациях, сколько обучение творческому подходу к поиску решения, накопление опыта мыслительной деятельности и демонстрация учащимися возможностей математики в решении разнообразных задач. Однако при решении текстовых задач в 5-6 классах чаще всего используется уравнение. Но мышление пятиклассников еще не готово к формальным процедурам, выполняемым при решении уравнений. Арифметический способ решения задач имеют ряд преимуществ по сравнению с алгебраическим потому, что результат каждого шага по действиям нагляднее и конкретнее, не выходит за рамки опыта пятиклассников. Школьники лучше и быстрее решают задачи по действиям, чем с помощью уравнений. Детское мышление конкретно, и развивать его надо на конкретных предметах и величинах, затем постепенно переходить к оперированию абстрактными образами.

Работа над задачей предусматривает внимательное прочтение текста условия, вникания в смысл каждого слова. Приведу примеры задач, которые легко и просто можно решить арифметическим способом.

Задача 1. Для приготовления варенья на две части малины берут три части сахара. Сколько килограммов сахара нужно взять на 2 кг 600 г малины?

При решении задачи на “части” надо приучить наглядно представлять условие задачи, т.е. лучше опираться на рисунок.

  1. 2600:2=1300 (г) - приходится на одну часть варенья;
  2. 1300*3= 3900 (г) - сахара нужно взять.

Задача 2. На первой полке стояло в 3 раза больше книг, чем на второй. На двух полках вместе стояло 120 книг. Сколько книг стояло на каждой полке?

1) 1+3=4 (части) - приходится на все книги;

2) 120:4=30 (книг) - приходится на одну часть (книги на второй полке);

3) 30*3=90 (книг)- стояло на первой полке.

Задача 3. В клетке сидят фазаны и кролики. Всего в ней 27 голов и 74 ноги. Узнать число фазанов и число кроликов в клетке.

Представим, что на крышку клетки, в которой сидят фазаны и кролики, мы положили морковку. Тогда все кролики встанут на задние лапки, чтобы дотянуться до нее. Тогда:

  1. 27*2=54 (ноги) - будут стоять на полу;
  2. 74-54=20 (ног) - будут наверху;
  3. 20:2=10 (кроликов);
  4. 27-10=17 (фазанов).

Задача 4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, а в кино – 21, а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?

Для анализа условия и выбора плана решения можно использовать “круги Эйлера”.

  1. 30-5=25 (человек) – ходили или в кино, или на экскурсию,
  2. 25-23=2 (человек) – ходили только в кино;
  3. 21-2=19 (человек) – ходили и в кино, и на экскурсию.

Задача 5. Три утенка и четыре гусенка весят 2 кг 500 г, а четыре утенка и три гусенка весят 2кг 400г. Сколько весит один гусенок?

  1. 2500+2400=2900 (г) – весят семь утят и семь гусят;
  2. 4900:7=700 (г) – вес одного утенка и одного гусенка;
  3. 700*3=2100 (г) – вес 3 утят и 3 гусят;
  4. 2500-2100=400 (г) – вес гусенка.

Задача 6. Для детского сада купили 20 пирамид: больших и маленьких – по 7 и по 5 колец. У всех пирамид 128 колец. Сколько было больших пирамид?

Представим, что со всех больших пирамид мы сняли по два кольца. Тогда:

1) 20*5=100 (колец) – осталось;

2) 128-100-28 (колец) – мы сняли;

3) 28:2=14 (больших пирамид).

Задача 7. Арбуз массой 20кг содержал 99% воды. Когда он немного усох, содержание воды в нем уменьшилось до 98%. Определите массу арбуза.

Для удобства решение будет сопровождаться иллюстрацией прямоугольников.

99% вода 1% сухое вещество
98% вода 2% сухое вещество

При этом желательно рисовать прямоугольники “сухого вещества” равными, потому что масса “сухого вещества” в арбузе остается неизменной.

1) 20:100=0,2 (кг) – масса “сухого вещества”;

2) 0,2:2=0,1 (кг) – приходится на 1% усохшего арбуза;

3) 0,1*100=10 (кг) – масса арбуза.

Задача 8. Гости спросили: сколько лет исполнилось каждой из трех сестер? Вера ответила, что ей и Наде вместе 28 лет, Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой из сестер?

  1. 38-28=10 (лет) – Любе;
  2. 23-10=13 (лет) – Наде;
  3. 28-13=15 (лет) – Вере.

Арифметический способ решения текстовых задач учит ребенка действовать осознанно, логически правильно, потому что при решении таким способом усиливается внимание к вопросу “почему” и имеется большой развивающий потенциал. Это способствует развитию учащихся, формированию у них интереса к решению задач и к самой науке математике.

Чтобы сделать обучение посильным, увлекательным и поучительным, надо очень внимательно отнестись к выбору текстовых задач, рассматривать различные способы их решения, выбирая оптимальные из них, развивать логическое мышление, что в дальнейшем необходимо при решении геометрических задач.

Научиться решать задачи школьники смогут, лишь решая их. “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”,- пишет Д.Пойа в книге “ Математическое открытие”.

Анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математики, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.Тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.


«задачи для тренажера методичка»

Тренажёр: «Арифметические способы решения задач»

«Сравнение чисел по сумме и разности».

    В двух корзинах 80 боровиков. В первой корзине на 10 боровиков меньше, чем во второй. Сколько боровиков в каждой корзине?

    В швейное ателье поступило 480 м джинсовой ткани и драпа. Джинсовой ткани поступило на 140 м больше, чем драпа. Сколько метров джинсовой ткани поступило в ателье?

    Модель телебашни состоит из двух блоков. Нижний блок на 130 см короче верхнего. Какова высота верхнего и нижнего блоков, если высота башни 4 м 70 см?

    В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше.

Задача из «Арифметики» Л. Н. Толстого.

    а) У двух мужиков 35 овец. У одного на 9 овец больше, чем у другого. Сколько овец у каждого?

б) У двух мужиков 40 овец, а у одного меньше против другого на 6 овец. Сколько овец у каждого мужика?

    В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

«Круги Эйлера».

    В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К жильцов с кошками. Сколько жильцов имеют и собак, и кошек? Сколько жильцов имеют только собак? Сколько жильцов имеют только кошек? Сколько жильцов не имеют ни собак, ни кошек?

    Из 52 школьников 23 занимаются волейболом и 35 баскетболом, а 16 – и волейболом, и баскетболом. Остальные не занимаются ни одним из этих видов спорта. Сколько школьников не занимаются ни одним из этих видов спорта?

    На рисунке круг А изображает всех сотрудников университета, знающих английский язык, круг Н – знающих немецкий и круг Ф – французский. Сколько сотрудников университета знает: а) 3 языка; б) английский и немецкий; в) французский? Сколько всего сотрудников университета? Сколько из них не говорит по – французски?

    В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

    Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним?

    Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

«Метод уравнивания данных».

    В 3 маленьких и 4 больших букетах 29 цветков, а в 5 маленьких и 4 больших букетах 35 цветков. Сколько цветков в каждом букете в отдельности?

    Масса 2 плиток шоколада – большой и маленькой – 120 г, а 3 больших и 2 маленьких – 320 г. Какова масса каждой плитки?

    5 яблок и 3 груши весят 810 г, а 3 яблока и 5 груш весят 870 г. Сколько весит одно яблока? Одна груша?

    Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг. Сколько весит один утенок?

    Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

    3 красных кубика и 6 синих кубиков стоят 165тг руб. Причём, пять красных дороже двух синих на 95 тг. Сколько стоит каждый кубик?

    2 альбома для рисования и 3 альбома для марок вместе стоят 160 руб., причём 3 альбома для рисования стоят на 45 руб. дороже двух альбомов для марок.

«Графы».

    Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

    Сколько трехзначных чисел можно составить из цифр 0, 1, 3, 5, если цифры в записи числа не повторяются?

    В среду в 5 классе пять уроков: математика, физкультура, история, русский язык и естествознание. Сколько различных вариантов расписания на среду можно составить?

«Старинный способ решения задач на смешение веществ».

    Как смешать масла? У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла стоимостью 7 гривен?

    Сколько надо взять карамели по цене 260 тг за 1 кг и по цене 190 тг за 1 кг, чтобы составить 21 кг смеси по цене 210 тг за килограмм?

    Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти три сорта, чтобы получить чай стоимостью 6 гривен за фунт?

    Некто имеет серебро разных проб: одно – 12 – ой пробы, другое – 10 – ой пробы, третье – 6 – ой пробы. Сколько какого серебра надо взять, чтобы получить 1 фунт серебра 9 – ой пробы?

    Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он и того и другого, если синее стоило 5 руб. за аршин, а черное - 3 руб.?

Разные задачи.

    Для новогодних подарков купили 87 кг фруктов, причем яблок было на 17 кг больше, чем апельсинов. Сколько яблок и сколько апельсинов купили?

    На новогодней елке детей в карнавальных костюмах снежинок было в 3 раза больше, чем в костюмах Петрушек. Сколько было детей в костюмах Петрушек, если их было на 12 меньше?

    Маша получила в 2 раза меньше новогодних поздравлений, чем Коля. Сколько поздравлений получил каждый, если всего их было 27?(9 и 18).

    Для новогодних призов было куплено 28 кг конфет. Конфеты “Ласточка” составили 2 части, “Муза” - 3 части, “Ромашка” - 2 части. Сколько конфет каждого сорта купили?(8, 8, 12).

    На складе есть 2004 кг муки. Можно ли её разложить в мешки массой в 9 кг и массой в 18 кг?

    В магазине "Все для чая"" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

    Лошадь съедает стог сена за 2 дня, корова - за 3, овца - за 6. За сколько дней они съедят стог, если будут есть его вместе?

Просмотр содержимого документа
«конспект урока ариф сп»

« Арифметические способы решения текстовых задач».

Человеку, изучающему математику, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три – четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.

У.У.Сойер

Цель урока : использовать знания, полученные на предыдущих уроках, проявить фантазию, интуицию, воображение, смекалку для решения тестовых задач различными способами.

Задачи урока: образовательные : анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математика, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.

Развивающие : ощутить необходимость самореализации, оказавшись в определенной ролевой ситуации.

Воспитательные: развивают личностные качества, формируют коммуникативную культуру.

Средства обучения : тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.

ХОД УРОКА.

I. Организационный момент

Здравствуйте, ребята. Садитесь. Сегодня у нас занятие по теме «Арифметические способы решения текстовых задач».

II. Актуализация знаний.

Математика - одна из древних и важных наук. Многими математическими знаниями люди пользовались еще в глубокой древности - тысячи лет назад. Они были необходимы купцам и строителям, воинам и землемерам, жрецам и путешественникам.

И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Основа хорошего понимания математики – умение считать, думать, рассуждать, находить удачные решения задач.

Сегодня мы рассмотрим арифметические способы решения текстовых задач, разберем задачи старинные, дошедшие до нас из разных стран и времен, задачи на уравнивания, на сравнение по сумме и разности и другие.

Цель занятия – вовлечь вас в удивительный мир красоты, богатства и многообразия – мир интересных задач. А, значит, познакомить с некоторыми арифметическими способами, приводящими к весьма изящным и поучительным решениям.

Задача – это почти всегда поиск, раскрытие каких – то свойств и отношений, а средства ее решения – это интуиция и догадка, эрудиция и владение методами математики.

В качестве основных в математике различают арифметический и алгебраический способы решения задач.

Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Не секрет, что человек, владеющий разными инструментами и применяющий их в зависимости от характера выполняемой работы, добивается значительно лучших результатов, чем человек, владеющий лишь одним универсальным инструментом.

Существует много арифметических способов и нестандартных приемов решения задач. С некоторыми из них я сегодня хочу вас познакомить.

1.Метод решения текстовых задач «Сравнение чисел по сумме и разности».

Задача: Бабушка осенью с дачного участка собрала 51 кг моркови и капусты. Капусты было на 15 кг больше, чем моркови. Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

Вопросы, которые соответствуют пунктам алгоритма решения задач данного класса.

1. Выяснить о каких величинах идет речь в задаче

О количестве моркови и капусты, которые собрала бабушка, вместе и в отдельности.

2. Указать, значения каких величин необходимо найти в задаче.

Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

3. Назвать зависимость между величинами в задаче.

В задаче говорится о сумме и разности величин.

4. Назвать сумму и разность значений величин.

Сумма – 51 кг, разность – 15 кг.

5. Уравниванием величин найти удвоенное значение меньшей величины (от суммы величин отнять разность величин).

51 – 15 = 36 (кг) – удвоенное количество моркови.

6. Зная удвоенное значение, найти значение меньшей величины (удвоенное значение разделить на два).

36: 2 = 18 (кг) – моркови.

7. Используя разность величин и значение меньшей величины, найти значение большей величины.

18 + 15 = 33 (кг) – капусты. Ответ: 18 кг, 33 кг. Задача. В клетке находятся фазаны и кролики. Всего 6 голов и 20 ног. Сколько кроликов и сколько фазанов в клетке ?
Способ 1. Метод подбора:
2 фазана, 4 кролика.
Проверка: 2 + 4 = 6 (голов); 4 4 + 2 2 = 20 (ног).
Это метод подбора (от слова “подбирать”). Преимущества и недостатки у этого метода решения (трудно подбирать, если числа большие) Таким образом, появляется стимул для поиска более удобных методов решения.
Итоги обсуждения: метод подбора удобен при действиях с маленькими числами, при увеличении величин он становится нерациональным и трудоемким.
Способ 2. Полный перебор вариантов.

Составляется таблица:


Ответ: 4 кролика, 2 фазана.
Название этому методу - “полный”. Итоги обсуждения: метод полного перебора удобен, но при больших величинах достаточно трудоемок.
Способ 3. Метод предположения.

Возьмем старинную китайскую задачу:

В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Узнать число фазанов и число кроликов. (Задача из китайской математической книги «Киу-Чанг», составленной за 2600 лет до н. э.).

Приведем диалог, найденный у старых мастеров математики. - Представим, что на клетку, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

Но в условии задачи даны 94 ноги, где же остальные?

Остальные ноги не посчитаны – это передние ноги кроликов.

Сколько же их?

24 (94 – 70 = 24)

Сколько же кроликов?

12 (24: 2 = 12)

А фазанов?

23 (35- 12 = 23)

Название этого метода – “метод предположения по недостатку”. Попробуйте сами объяснить это название (у сидящих в клетке 2 или 4 ноги, а мы предположили, что у всех наименьшее из этих чисел – 2 ноги).

Другой способ решения этой же задачи. - Давайте попробуем решить эту задачу - “методом предположения по избытку”: Представим себе, что у фазанов появилось еще по две ноги, тогда всех ног будет 35 × 4 =140.

Но по условию задачи, всего 94 ноги, т.е. 140 – 94= 46 ноги лишние, чьи они? Это ноги фазанов, у них появилась лишняя пара ног. Значит, фазанов будет 46: 2 = 23, тогда кроликов 35 -23 = 12.
Итоги обсуждения: метод предположения имеет два варианта – по недостатку и по избытку ; по сравнению с предыдущими методами он удобнее, так как менее трудоемок.
Задача. По пустыне медленно идет караван верблюдов, всего их 40. Если пересчитать все горбы у этих верблюдов, то получится 57 горбов. Сколько в этом караване одногорбых верблюдов? 1 способ. Решить с помощью уравнения.

Кол- во горбов у одного Кол- во верблюдов Всего горбов

2 х 2 х

1 40 - х 40 - х 57

2 х + 40 - х = 57

х + 40 = 57

х = 57 -40

х = 17

2 способ.

- Сколько горбов может быть у верблюдов?

(их может быть два или один)

Давайте каждому верблюду на один горб прикрепим цветок.

- Сколько цветков потребуется? (40 верблюдов – 40 цветов)

- Сколько горбов останется без цветов?

(Таких будет 57-40=17 . Это вторые горбы двугорбых верблюдов).

Сколько двугорбых верблюдов? (17)

Сколько одногорбых верблюдов? (40-17=23)

Каков же ответ задачи? (17 и 23 верблюдов).

Задача. В гараже стояли легковые машины и мотоциклы с колясками, всех вместе 18. У машин и мотоциклов – 65 колес. Сколько мотоциклов с колясками стояло в гараже, если у машин 4 колеса, а у мотоцикла – 3 колеса?

1 способ. С помощью уравнения:

Кол- во колес у 1 Кол- во Всего колес

Маш. 4 х 4 х

Мот. 3 18 - х 3(18 - х ) 65

4 х + 3(18 - х ) = 65

4 х + 5 4 -3 х =65

х = 65 - 54

х = 11, 18 – 11 = 7.

Переформулируем задачу : Грабители, пришедшие в гараж, где стояли 18 машин и мотоциклов с колясками, сняли с каждой машины и каждого мотоцикла по три колеса и унесли. Сколько колес осталось в гараже, если их было 65? Машине или мотоциклу они принадлежат?

3×18=54 –столько колес унесли грабители,

65- 54 = 11 – столько колес осталось (машин в гараже),

18 - 11 = 7 –мотоциклов.

Ответ: 7 мотоциклов.

Самостоятельно:

В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

- Сколько стало колес у машин и мотоциклов вместе? (4×23=92)

- Сколько запасных колес положили в каждую коляску? (92 - 87= 5)

- Сколько машин в гараже? (23 - 5=18).

Задача. В нашем классе можно изучать английский или французский языки (по выбору). Известно, что английский язык изучают 20 школьников, а французский – 17. Всего в классе 32 ученика. Сколько учащихся изучают оба языка: и английский и французский?

Изобразим два круга. В одном будем фиксировать количество школьников, изучающих английский язык, в другом –школьников, изучающих французский. Так как по условию задачи есть учащиеся, изучающие оба языка: и английский и французский , то круги будут иметь общую часть. В условии этой задачи не так легко разобраться. Если сложить 20 и 17, то получится больше чем 32. Это объясняется тем, что некоторых школьников мы здесь учли дважды – а именно тех, которые изучают оба языка: и английский и французский. Значит, (20 + 17) – 32 = 5 учащихся изучают оба языка: и английский и французский.

Англ. Фран.

20 уч. 17 уч.

(20 + 17) – 32 = 5 (учащихся).

Схемы, подобные той, которой мы воспользовались при решении задачи, в математике называют кругами (или диаграммами) Эйлера. Леонард Эйлер (1736 год) родился в Швейцарии. Но долгие годы жил работал в России.

Задача. Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

Газеты Журналы

По рисунку видно, что в доме живут 89 семей.

Задача. В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

Русский 15 Английский

21 10 19

Немецкий

Решение: 120 – (60 + 48 + 32 -21 – 19 – 15 + 10) = 25 (чел.).

Задача. Три котенка и два щенка весят 2 кг 600 г, а два котенка и три щенка весят 2 кг 900 г. Сколько весит щенок?

3 котенка и 2 щенка – 2кг 600 г

2 котенка и 3щенка – 2кг 900 г.

Из условия следует, что 5 котят и 5 щенят весят 5 кг 500 г. Значит, 1 котенок и 1 щенок весят 1 кг 100 г

2 кот.и 2 щен. весят 2 кг 200 г

Сравним условия –

2 котенка + 3щенка =2кг 900 г

2 котенка + 2 щенка = 2 кг 200 г, видим, что щенок весит 700 г.

Задача. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

Запишем краткое условие задачи:

1 лошади и 2 коров -34кг.

2 лошадей и 1 коров -35кг.

Можно ли узнать, сколько сена потребуется для 3 лошадей и 3 коров?

(для 3 лошадей и 3 коров – 34+35=69 кг)

Можно ли узнать, сколько сена потребуется для одной лошади и одной коровы? (69: 3 – 23кг)

Сколько сена потребуется для одной лошади? (35-23=12кг)

Сколько сена потребуется для одной коровы? (23 -13 =11кг)

Ответ: 12кг и 11 кг.

Задача. Мадина решила позавтракать в школьном буфете. Изучи меню и ответь, сколькими способами она может выбрать напиток и кондитерское изделие?

Кондитерские изделия

Ватрушка

Давайте предположим, что из напитков Мадина выберет чай. Какое кондитерское изделие она может подобрать к чаю? (чай – ватрушка, чай – печенье, чай – булка)

Сколько способов? (3)

А если компот? (тоже 3)

Как же узнать, сколько способов может Мадина использовать, чтобы выбрать себе обед? (3+3+3=9)

Да, вы правы. Но чтобы нам было легче решать такую задачу, мы будем использовать графы. Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Обозначим напитки и кондитерские изделия точками и соединим пары тех блюд, которые выберет Мадина.

чай молоко компот

ватрушка печенье булочка

Теперь сосчитаем количество линий. Их 9. Значит, существует 9 способов выбора блюд.

Задача. Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

Как думаете, сколькими способами? (3)

Почему? (цветов 3)

Да. Но еще есть разная посуда: или ваза, или кувшин. Давай попробуем выполнить задачу графически.

ваза кувшин

розы тюльпаны гвоздики

Посчитайте линии. Сколько их? (6)

Значит, сколько существует способов выбора у Сережи? (6)

Итог урока.

Сегодня мы решили ряд задач. Но работа не завершена, есть желание ее продолжить, и надеюсь, что это поможет вам успешно решать текстовые задачи.

Известно, что решение задач – это практическое искусство, подобное плаванию или игре на фортепиано. Научиться ему можно только подражая хорошим образцам, постоянно практикуясь.

Это лишь самые простые из задач, сложные пока остаются предметом для будущего изучения. Но их все равно их намного больше, чем мы смогли бы решить. И если по окончанию урока вы сможете решать задачи «за страницами учебного материала», то можно считать, что я свою задачу выполнила.

Знание математики помогает разрешить определённую жизненную проблему. В жизни вам придется регулярно разрешать определённые вопросы, для этого необходимо развивать интеллектуальные способности, благодаря которым развивается внутренний потенциал, развиваются умения предвидеть ситуацию, прогнозировать, принять нестандартное решение.

Урок я хочу закончить словами: «Всякая хорошо решенная математическая задача доставляет умственное наслаждение.» (Г. Гессе).

Согласны вы с этим?

Домашнее задание .

На дом будет такое задание: используя тексты решенных задач, как образец, решите задачи № 8, 17, 26 теми способами, которые мы изучили.

Решение задач алгебраическим способом (с помощью уравнений) По учебнику И.И. Зубаревой, А.Г. Мордковича

учитель математики МОУ «ЛСОШ №2»

г. Лихославль Тверской области


Цели: - показать правило решения задач алгебраическим способом; - формировать умение решать задачи арифметическим и алгебраическим способами.


Способы

решения задач

Арифметический (решение задачи по действиям)

Алгебраический (решение задачи с помощью уравнения)


Задача №509

Прочитайте задачу.

Постарайтесь найти разные способы решения.

В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше, чем в другой.

1 способ решения

(смотреть)

3 способ решения

(смотреть)

2 способ решения

4 способ решения


1 способ (арифметический)

  • 16 – 4 = 12 (кг) – печенья останется в двух коробках, если из первой коробки достать 4 кг печенья.
  • 12: 2 = 6 (кг) – печенья было во второй коробке.
  • 6 + 4 = 10 (кг) – печенья было в первой коробке.

Ответ

В решении использован способ уравнивания .

Вопрос : почему он получил такое название?

Назад )


2 способ (арифметический)

  • 16 + 4 = 20 (кг) – печенья станет в двух коробках, если во вторую коробку добавить 4 кг печенья.
  • 20: 2 = 10 (кг) – печенья было в первой коробке.
  • 10 - 4 = 6 (кг) – печенья было во второй коробке.

Ответ : масса печенья в первой коробке – 10 кг, а во второй 6 кг.

В решении использован способ уравнивания .

Назад )


3 способ (алгебраический)

Обозначим массу печенья во второй коробке буквой х кг. Тогда масса печенья в первой коробке будет равна (х +4) кг, а масса печенья в двух коробках – ((х +4)+ х ) кг.

(х +4)+ х =16

х +4+ х =16

2 х +4=16

2 х =16-4

2 х =12

х =12:2

Во второй коробке было 6 кг печенья.

6+4=10 (кг) – печенья было в первой коробке.

В решении использован алгебраический способ.

Задание : Объясните, в чем отличие арифметического способа от алгебраического?

Назад )


4 способ (алгебраический)

Обозначим массу печенья в первой коробке буквой х кг. Тогда масса печенья во второй коробке будет равна (х -4) кг, а масса печенья в двух коробках – (х +(х -4)) кг.

По условию задачи, в двух коробках было 16 кг печенья. Получаем уравнение:

х +(х -4)=16

х + х -4=16

2 х -4=16

2 х =16+4

2 х =20

х =20:2

В первой коробке было 10 кг печенья.

10-4=6 (кг) – печенья было во второй коробке.

В решении использован алгебраический способ.

Назад )


  • Какие два способа решения задачи были использованы?
  • Что собой представляет способ уравнивания?
  • Чем первый способ уравнивания отличается от второго?
  • В одном кармане на 10 рублей больше, чем в другом. Как можно уравнять количество денег в обоих карманах?
  • В чем заключается алгебраический способ решения задачи?
  • Чем отличается 3 способ решения задачи от 4-го?
  • В одном кармане на 10 рублей больше, чем в другом. Известно, что меньшее количество денег обозначили переменной х . Как будет выражаться через х
  • Если за х обозначить большее количество денег в кармане, тогда как будет выражаться через х количество денег в другом кармане?
  • В магазине шампунь стоит на 25 руб дороже, чем в супермаркете. Обозначьте одну переменную буквой у и выразите другую стоимость через эту переменную.

Задача №510

Решите задачу арифметическим и алгебраическим способами.

С трех участков земли собрали 156 ц картофеля. С первого и второго участков картофеля собрали поровну, а с третьего – на 12 ц больше, чем с каждого из двух первых. Сколько картофеля собрали с каждого участка.

Алгебраический способ

(смотреть)

Арифметический способ

(смотреть)

выход )


Арифметический способ

  • 156 - 12 = 144 (ц) – картофеля собрали бы с трех участков, если бы урожайность всех участков была бы одинаковой.
  • 144: 3 = 48 (ц) – картофеля собрали с первого и собрали со второго участков.
  • 48 + 12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ

Назад )


Алгебраический способ

Пусть с первого участка собрали х ц картофеля. Тогда со второго участка собрали тоже х ц картофеля, а с третьего участка собрали (х +12) ц картофеля.

По условию со всех трех участков собрали 156 ц картофеля.

Получаем уравнение:

х + х + (х +12) =156

х + х + х + 12 = 156

3 х +12 = 156

3 х = 156 – 12

3 х = 144

х = 144: 3

С первого и второго участков собрали по 48 ц картофеля.

48 +12 = 60 (ц) – картофеля собрали с третьего участка.

Ответ : с первого и второго участков собрали по 48 ц картофеля, а с третьего участка собрали 60 ц картофеля.

Назад


    Общие замечания к решению задач арифметическим методом.

    Задачи на нахождение неизвестных по результатам действий.

    Задачи на пропорциональное деление.

    Задачи на проценты и части.

    Задачи, решаемые обратным ходом.

1. Арифметический метод – это основной метод решения текстовых задач в начальной школе. Находит он свое применение и в среднем звене общеобразовательной школы. Этот метод позволяет глубже понять и оценить всю важность и значимость каждого этапа работы над задачей.

В некоторых случаях решение задачи арифметическим методом значительно проще, чем другими методами.

Подкупая своей простотой и доступностью, арифметический метод вместе с тем достаточно сложен, и овладение приемами решения задач этим методом требует серьезной и кропотливой работы. Большое разнообразие видов задач не позволяет сформировать универсального подхода к анализу задач, поиску пути их решения: задачи, даже объединенные в одну группу, имеют со­вершенно разные способы решения.

2 . К задачам на нахождение неизвестных по их разности и отношению относятся задачи, в которых по известным разности и частному двух значений некоторой величины тре­буется найти эти значения.

Алгебраическая модель:

Ответ находится по формулам: х = ак/(к – 1), у = а/(к – 1).

Пример. В плацкартных вагонах скорого поезда на 432 пассажира больше, чем в купейных. Сколько пассажиров находится в плацкартных и купейных вагонах отдельно, если в купейных вагонах пассажиров в 4 раза меньше, чем в плацкартных?

Решение. Графическая модель задачи представлена на рис. 4.

Рис. 4

Число пассажиров в купейных вагонах примем за 1 часть. Тогда можно найти, сколько частей приходится на число пассажиров в плацкартных вагонах, а затем, сколько частей приходится на 432 пассажира. После этого можно определить число пассажиров, составляющих 1 часть (находящихся в купейных вагонах). Зная, что в плацкартных вагонах пассажиров в 4 раза больше, найдем их число.

    1  4 = 4 (ч.) – приходится на пассажиров в плацкартных вагонах;

    4 – 1 = 3 (ч.) – приходится на разность между числом пассажиров в плацкартных и купейных вагонах;

    432: 3 = 144 (п.) – в купейных вагонах;

    144  4 = 576 (п.) – в плацкартных вагонах.

Эту задачу можно проверить, решив ее другим способом, а именно:

    1  4 = 4(ч.);

    4 – 1 = 3 (ч.);

    432: 3 = 144 (п.);

    144 + 432 = 576 (п.).

Ответ: в купейных вагонах 144 пассажира, в плацкартных – 576.

К задачам на нахождение неизвестных по двум остаткам или двум разностям , относятся задачи, в которых рассматриваются две прямо или обратно пропорциональные величины, такие, что известны два значения одной величины и разность соответствующих значений другой величины, а требуется найти сами значения этой величины.

Алгебраическая модель:

Ответы находятся по формулам:

Пример. Два поезда прошли с одинаковой скоростью – один 837 км, другой 248 км, причем первый был в пути на 19 ч. больше второго. Сколько часов был в пути каждый поезд?

Решение. Графическая модель задачи представлена на рисунке 5.

Рис. 5

Чтобы ответить на вопрос задачи, сколько часов был в пути тот или другой поезд, надо знать пройденное им расстояние и скорость. Расстояние дано в условии. Чтобы узнать скорость, надо знать расстояние и время, за которое это расстояние пройдено. В условии сказано, что первый поезд шел на 19 ч. дольше, а пройденное им за это время расстояние можно найти. Он шел лишних 19 ч. – очевидно, за это время прошел и лишнее расстояние.

    837 – 248 = 589 (км) – на столько километров больше прошел пер­вый поезд;

    589: 19 = 31 (км/ч) – скорость первого поезда;

    837: 31 = 27 (ч.) – был в пути первый поезд;

4) 248: 31 = 8 (ч.) – был в пути второй поезд.

Проверим решение задачи установлением соответствия между данными и числами, полученными при решении задачи.

Узнав, сколько времени был в пути каждый поезд, найдем, на сколько часов больше был в пути первый поезд, чем второй: 27 – 8 = 19 (ч.). Это число совпадает с данным в условии. Следовательно, задача решена верно.

Эту задачу можно проверить, решив ее другим способом. Все четыре вопроса и первые три действия остаются те же.

4) 27 –19 = 8 (ч.).

Ответ: первый поезд был в пути 31ч., второй поезд – 8 ч.

Задачи на нахождение трех неизвестных по трем суммам этих неизвестных, взятых попарно:

Алгебраическая модель:

Ответ находится по формулам:

х = (а – b + с)/2, у = (а + b с)/2, z = (b + с – a )/ 2.

Пример. Английский и немецкий языки изучают 116 школьников, немецкий и испанский языки изучают 46 школьников, а английский и испанский языки изучают 90 школьников. Сколько школьников изучают английский, немецкий и испанский языки отдельно, если известно, что каждый школьник изучает только один язык?

Решение. Графическая модель задачи представлена на рисунке 6.

Сколько школьников изучает каждый из языков?

Графическая модель задачи показывает: если сложить численности школьников, данные в условии (116 + 90 + 46), то получим удвоенное число школьников, изучающих английский, немецкий и испанский языки. Разделив его на два, найдем общее число школьников. Чтобы найти число школьников, изучающих английский язык, достаточно из этого числа вычесть число школьников, изучающих немецкий и испанский языки. Аналогично находим остальные искомые числа.

Запишем решение по действиям с пояснениями:

    116 + 90 + 46 = 252 (шк.) – удвоенное число школьников, изучающих языки;

    252: 2 = 126 (шк.) – изучают языки;

    126 – 46 = 80 (шк.) – изучают английский язык;

    126 – 90 = 36 (шк.) – изучают немецкий язык;

    126 – 116 = 10 (шк.) – изучают испанский язык.

Эту задачу можно проверить, решив ее другим способом.

    116 – 46 = 70 (шк.) – на столько больше школьников изучают английский язык, чем испанский;

    90 + 70 = 160 (шк.) – удвоенное число школьников, изучающих английский язык;

    160: 2 = 80 (шк.) – изучают английский язык;

    90 – 80 = 10 (шк.) – изучают испанский язык;

    116 – 80 = 36 (шк.) – изучают немецкий язык.

Ответ: английский язык изучают 80 школьников, немецкий язык – 36 школьников, испанский язык – 10 школьников.

3. К задачам на пропорциональное деление относятся задачи, в которых данное значение некоторой величины требуется разделить на части пропорционально заданным числам. В некоторых из них части представлены явно, а в других эти части надо суметь выделить, приняв одно из значений этой величины за одну часть и определив, сколько таких частей приходится на другие ее значения.

Выделяют пять видов задач на пропорциональное деление.

1) Задачи на деление числа на части, прямо пропорциональные ряду целых или дробных чисел

К задачам данного типа относятся задачи, в которых число А х 1, х 2 , х 3 , ..., х n прямо пропорционально числам а 1 , а 2 , а 3 , ..., а n .

Алгебраическая модель:

Ответ находится по формулам:

Пример. Туристическая фирма располагает четырьмя базами отдыха, которые имеют корпуса одинаковой вместимости. На территории 1-й базы отдыха расположены 6 корпусов, 2-й – 4 корпуса, 3-й – 5 корпусов, 4-й – 7 корпусов. Сколько отдыхающих может разместиться на каждой базе, если на всех 4 базах может разместиться 2112 человек?

Решение. Краткая запись задачи показана на рисунке 7.

Рис. 7

Чтобы ответить на вопрос задачи, сколько отдыхающих может разместиться на каждой базе, надо знать, сколько отдыхающих может разместиться в одном корпусе и сколько корпусов расположено на территории каждой базы. Число корпусов на каждой базе дано в условии. Чтобы узнать, сколько отдыхающих может разместиться в одном корпусе, надо знать, сколько отдыхающих может разместиться на всех 4 базах (это дано в условии) и сколько корпусов расположено на территории всех 4 баз. Последнее можно определить, зная из условия, сколько корпусов расположено на территории каждой базы.

Запишем решение по действиям с пояснениями:

    6 + 4 + 5 + 7 = 22 (к.) – расположено на территории 4 баз;

    2112: 22 = 96 (ч.) – может разместиться в одном корпусе;

    96  6 = 576 (ч.) – может разместиться на первой базе;

    96  4 = 384 (ч.) – может разместиться на второй базе;

    96  5 = 480 (ч.) – может разместиться на третьей базе;

    96  7 = 672 (ч.) – может разместиться на четвертой базе.

Проверка. Подсчитываем, сколько отдыхающих может разместиться на 4 базах: 576 + 384 + 480 + 672 = 2 112 (ч.). Расхождения с условием задачи нет. Задача решена правильно.

Ответ: на первой базе может разместиться 576 отдыхающих, на второй – 384 отдыхающих, на третьей – 480 отдыхающих, на четвертой – 672 отдыхающих.

2) Задачи на деление числа на части, обратно пропорциональные ряду целых или дробных чисел

К ним относятся задачи, в которых число А (зна­чение некоторой величины) нужно разделить на части x 1 i , x 2 , x 3 i , ..., х„ обратно пропорционально числам а а 2 , а 3 ,..., а n .

Алгебраическая модель:

или

x 1 : x 2 3 :...:х„ = a 2 a 3 ...а n 1 а 3 ...а п 1 а 2 а 4 ...а n :...:а 1 а 2 ...а n -1

Ответ находится по формулам:

где S = а 2 а 3 ...а„ + a l a i ... a n + а ] а 2 а 4 ...а n + ... + а 1 а 2 ...а n -1.

Пример. За четыре месяца доход зверофермы от продажи пушнины составил 1 925 000 р., причем по месяцам полученные деньги распределились обратно пропорционально числам 2, 3, 5, 4. Каков доход фермы в каждом месяце отдельно?

Решение. Для определения названных в условии доходов дан общий доход за четыре месяца, то есть сумма четырех искомых чисел, а также отношения между искомыми числами. Искомые доходы обратно пропорциональны числам 2, 3, 5, 4.

Обозначим искомые доходы соответственно через х, х 2 , х 3 , х 4 . Тогда кратко задачу можно записать так, как показано на рисунке 8.

Рис. 8

Зная число частей, приходящихся на каждое из искомых чисел, найдем число частей, заключающихся в их сумме. По данному общему доходу за четыре месяца, то есть по сумме искомых чисел и по числу частей, содержащихся в этой сумме, узнаем величину одной части, а потом искомые доходы.

Запишем решение по действиям с пояснениями:

1. Искомые доходы обратно пропорциональны числам 2, 3, 5, 4, а значит, прямо пропорциональны числам, обратным данным, то есть имеют место отношения . Данные отношения в дробных числах заменим отношениями целых чисел:

2. Зная, что х содержит 30 равных частей, х 2 20, х 3 12, х 4 15, найдем, сколько частей содержится в их сумме:

30 + 20 + 12+ 15 = 77 (ч.).

3. Сколько рублей приходится на одну часть?

1 925 000: 77 = 25 000 (р.).

4. Каков доход фермы в первом месяце?

25 000 30 = 750 000 (р.).

5. Каков доход фермы во втором месяце?

25 000 20 = 500 000 (р.).

6. Каков доход фермы в третьем месяце?

25 000– 12 = 300 000 (р.).

7. Каков доход фермы в четвертом месяце?

25 000– 15 = 375 000 (р.).

Ответ: в первом месяце доход фермы составил 750 000 р., во втором – 500 000 р., в третьем – 300 000 р., в четвертом – 375 000 р.

3) Задачи на деление числа на части, когда даны отдельные отношения для каждой пары искомых чисел

К задачам этого типа относят те задачи, в которых число А (значение некоторой величины) нужно разделить на части х 1 , х 2 , х 3 , ..., х„, когда дан ряд отношений для искомых чисел, взятых попарно. Алгебраическая модель:

х 1: х 2 = а 1 : b 1, х 2 : х 3 = а 2 : b 2, х 3 : х 4 = а 3 : b 3 , ..., х п-1 : х n = а n -1 : b п-1 .

п = 4. Алгебраическая модель:

х х 2 = а 1 : b 1, х 2 3= а 2 : b 2, х 3 : х 4 = а 3: b 3 .

Итак, х 1: х 2 : х 3: х 4 = а 1 а 2 а 3 : b 1 а 2 а 3 : b 1 b 2 а 3 : b 1 b 2 b 3 .

где S = а 1 а 2 а 3 + b 1 а г а 3 + b 1 b 2 а 3 + b 1 b 2 b 3

Пример. В трех городах 168 000 жителей. Числа жителей первого и второго городов находятся в отношении , а второго и третьего городов – в отношении . Сколько жителей в каждом городе?

Решение. Обозначим искомые численности жителей соответственно через х 1 , х 2 , х 3 . Тогда кратко задачу можно записать так, как показано на рисунке 9.

Рис. 9

Для определения численности жителей даны числа жителей в трех городах, то есть сумма трех искомых чисел, а также отдельные отношения между искомыми числами. Заменив эти отношения рядом отношений, выразим численности жителей трех городов в равных частях. Зная число частей, приходящихся на каждое из искомых чисел, найдем число частей, заключающихся в их сумме. По данной общей численности жителей в трех городах, то есть по сумме искомых чисел и по числу частей, содержащихся в этой сумме, узнаем величину одной части, а потом искомые численности жителей.

Запишем решение по действиям с пояснениями.

1. Заменяем отношение дробных чисел отношением целых чисел:

Числу жителей второго города ставим в соответствие число 15 (наименьшее общее кратное чисел 3 и 5).

Изменяем соответствующим образом получившиеся отношения:

х 1: х 2 = 4: 3 = (4-5):(3-5) = 20: 15, х 2: х 3 = 5: 7 = (5-3):(7-3) = 15: 21.

Из отдельных отношений составляем ряд отношений:

х 1: х 2 : х 3 = 20: 15: 21.

2. 20 + 15 + 21 = 56 (ч.) – стольким равным частям соответствует число 168 000;

3. 168 000: 56 = 3 000 (ж.) – приходится на одну часть;

4. 3 000 20 = 60 000 (ж.) – в первом городе;

5. 3 000 15 = 45 000 (ж.) – во втором городе;

    3 000 21 = 63 000 (ж.) – в третьем городе.

Ответ: 60 000 жителей; 45 000 жителей; 63 000 жителей.

4) Задачи на деление числа на части пропорционально двум, трем и так далее рядам чисел

К задачам этого типа относятся задачи, в которых число А (значение некоторой величины) нужно разделить на части х 1, х 2 , х 3 ,..., х n пропорционально двум, трем, ..., N рядам чисел.

Ввиду громоздкости формул для решения задачи в общем виде рассмотрим частный случай, когда п = 3 и N = 2. Пусть х 1 х 2 , х 3 прямо пропорциональны числам а 1 , а 2 , а 3 и обратно пропорциональны числам b 1 , b 2 , b 3 .

Алгебраическая модель:

(см. пункт 1 данного параграфа),

Пример. Двое рабочих получили 1 800 р. Один работал 3 дня по 8 ч., другой 6 дней по 6 ч. Сколько заработал каждый, если за 1 ч. работы они получали поровну?

Решение . Краткая запись задачи показана на рисунке 10.

Рис. 10

Чтобы узнать, сколько получил каждый рабочий, надо знать, сколько рублей платили за 1 ч. работы и сколько часов работал каждый рабочий. Чтобы узнать, сколько рублей платили за 1 ч. работы, надо знать, сколько заплатили за всю работу (дано в условии) и сколько часов работали оба рабочих вместе. Чтобы узнать общее число часов работы, надо знать, сколько часов работал каждый, а для этого необходимо знать, сколько дней работал каждый и по сколько часов в день. Эти данные в условии имеются.

Запишем решение по действиям с пояснениями:

    8  3 = 24 (ч.) – работал первый рабочий;

    6  6 = 36 (ч.) – работал второй рабочий;

    24 + 36 = 60 (ч.) – работали оба рабочих вместе;

    1800: 60 = 30 (р.) – получали рабочие за 1 ч работы;

    30  24 = 720 (р.) – заработал первый рабочий;

    30  36 = 1080 (р.) – заработал второй рабочий. Ответ: 720 р.; 1080 р.

5) Задачи на нахождение нескольких чисел по данным их отношениям и сумме или разности (сумме или разности некоторых из них)

Пример. На оборудование детской площадки, теплицы и спортивного зала администрацией школы было израсходовано 49 000 р. Оборудование детской площадки обошлось вдвое дешевле, чем теплицы, а теплицы – в 3 раза дешевле, чем спортивного зала и детской площадки вместе. Сколько денег было израсходовано на оборудование каждого из указанных объектов?

Решение . Краткая запись задачи показана на рисунке 11.

Рис. 11

Чтобы узнать количество денег, израсходованных на оборудование каждого объекта, надо знать, сколько частей всех израсходованных денег приходилось на оборудование каждого объекта и сколько рублей приходилось на каждую часть. Число частей израсходованных денег на оборудование каждого объекта определяется из условия задачи. Определив число частей на оборудование каждого объекта в отдельности, а затем найдя их сумму, вычислим величину одной части (в рублях).

Запишем решение по действиям с пояснениями.

    Принимаем за 1 часть количество денег, израсходованных на оборудование детской площадки. По условию на оборудование теплицы израсходовано в 2 раза больше, то есть 1  2 = 2 (ч.); на оборудование детской площадки и спортивного зала вместе израсходовано в 3 раза больше, чем на теплицу, то есть 2  3 = 6 (ч.), следовательно, на оборудование спортивного зала израсходовали 6 – 1 = 5 (ч.).

    На оборудование детской площадки израсходована 1 часть, теплицы – 2 части, спортивного зала – 5 частей. Весь расход составлял 1 + 2 + + 5 = 8 (ч.).

    8 частей составляют 49 000 р., одна часть меньше этой суммы в 8 раз: 49 000: 8 = 6 125 (р.). Следовательно, на оборудование детской площадки израсходовали 6 125 р.

    На оборудование теплицы израсходовано в 2 раза больше: 6 125  2 = 12 250 (р.).

    На оборудование спортивного зала израсходовано 5 частей: 6 125  5 = 30 625 (р.).

Ответ: 6 125 р.; 12 250 р.; 30 625 р.

6) Задачи на исключение одного из неизвестных

К задачам этой группы относятся задачи, в которых даны суммы двух произведений, имеющих два повторяющихся сомножителя, и требуется найти значения этих сомножителей. Алгебраическая модель

Ответ находится по формулам:

Эти задачи решаются способом уравнивания данных, спосо­бом уравнивания данных и искомых, способом замены данных, а также так называемым способом «на предположение».

Пример. На швейной фабрике на 24 пальто и 45 костюмов израсходовали 204 м ткани, а на 24 пальто и 30 костюмов – 162 м. Сколько ткани расходуется на один костюм и сколько – на одно пальто?

Решение . Решим задачу способом уравнивания данных. Краткая запись задачи.

Арифметический способ решения текстовых задач

«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

А.В.Шевкин

Умение решать текстовые задачи – один из основных показателей математического развития учащихся, глубины усвоения ими учебного материала, четкости в рассуждениях, понимания логических аспектов различных вопросов.

Текстовые задачи для большинства школьников – трудный, а поэтому нелюбимый учебный материал. Однако, в школьном курсе математики ему придается большое значение, так как задачи способствуют развитию прежде всего логического мышления, пространственного воображения, практического применения математических знаний в деятельности человека.

В процессе решения задач учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики в решении реальных жизненных задач. Решение текстовых задач развивает логическую культуру, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.

Традиционная российская школа всегда уделяла особое внимание обучению детей решению текстовых задач. Исторически сложилось так, что достаточно долгое время математические знания из поколения в поколение передавались в виде текстовых задач с решениями. Значимость их заключалась еще в прикладном значении, так как по своему содержанию это были задачи практической направленности (расчеты банковские, торговые, земельные и др.). Образованным в России считался тот, кто умел решать эти типовые задачи, очень важные в повседневной жизни.

Необходимо отметить, что бучение решению практических задач давалось нелегко. Часто наблюдалось заучивание наизусть способа решения без осознанного понимания условия. Главное – определить тип задачи и найти правило для ее решения, понимание было не важно.

К середине XX века была разработана хорошая методика обучению решению задач. Но, к сожалению, часто наблюдалось со стороны преподавателей натаскивание учащихся на решение типовых задач, запоминание стандартных приемов. Но невозможно научиться решать задачи по заученной схеме.

В конце 60-х годов реформа школьного математического образования предполагала раннее введение уравнений с целью по-новому организовать обучение решению задач. Однако, роль алгебраического способа решения текстовых задач в 5-6 классах была преувеличена именно потому, что из школьной программы были удалены арифметические способы. И практика доказала, что без достаточной подготовки мышления учащихся решать задачи с помощью уравнений нецелесообразно. Ученик должен уметь рассуждать, представлять действия, которые происходят с предметами.

В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять достаточно внимания и не торопиться переходить к алгебраическому способу – решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, к чему они приводят. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе. Только над этим вряд ли задумывается ученик.

Очень часто мы наблюдаем, что ребенок не готов к решению задачи алгебраическим способом, когда вводим абстрактную переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что необходимо учитывать возрастные особенности детей, у которых на этот момент развито наглядно-образное мышление. Абстрактные модели им пока не под силу

Что же мы понимаем под требованием – решить задачу. Это значит найти такую последовательность действий, которая в результате анализа условия приведет к ответу на поставленный в задаче вопрос. Чтобы прийти к ответу, нужно проделать серьезный путь, начиная с момента понимания текста, уметь выделять главное, «перевести» задачу на язык математики, заменяя слова «скорее», «медленнее» на «меньше» или «больше», составлять графическую модель или таблицу, облегчающие понимание условия задачи, сопоставлять величины, устанавливая логические отношения между данными по условию и искомыми. И дается это детям очень нелегко.

Важно отметить, что текст задач должен составляться таким образом, чтобы ребенок понимал и представлял, о чем идет речь. Зачастую, прежде чем приступить к решению задачи, затрачивается много времени на разбор условия, когда учащимся приходится объяснять, что такое чугунная болванка, чем она отличается от детали, а также железобетонная опора, станок-автомат, жилая площадь и т.д. Текст задачи должен соответствовать уровню его восприятия. Конечно же, текст задачи необходимо приблизить к реальной жизни, чтобы можно было увидеть практическое применение данной модели.

Приступая к решению задачи необходимо не только представить ситуацию, о которой идет речь, но и изобразить ее на рисунке, схеме, в виде таблицы. Невозможно качественно решить задачу без составления краткой записи условия. Именно схематичное составление условия позволяет при обсуждении решения выявить все действия, которые необходимо выполнить, чтобы ответить на вопрос задачи.

Рассмотрим некоторые примеры решения текстовых задач

Задачи на движение

Данный тип задач широко распространен в школьном курсе математики. В них рассматриваются разные виды движения: навстречу, в противоположных направлениях, в одном направлении (один догоняет другого).

Для понимания этих задач удобно изобразить схему. Но, если учащийся составляет таблицу, не нужно переубеждать его в том, что данный способ краткой записи условия не очень хорош. Мы по-разному воспринимаем информацию. Может, ребенок в таком отображении лучше «видит» задачу.

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

Составим схему к задаче, которая достаточно полно отражает условие (указаны направления движения, скорости велосипедистов, время в пути до встречи, ясен вопрос):

Рассмотрим два способа решения этой задачи:

1 способ:

Традиционно мы любим решать эти задачи, вводя понятие «скорость сближения», и находим ее как сумму (или разность) скоростей участников движения. При движении навстречу друг другу – скорости складываем:

1)12 + 14 = 26 (км/ч) – скорость сближения

Зная, что время движения одинаково, второе действие позволяет по формуле пути (S = vt ) рассчитать искомое расстояние и ответить на поставленный в задаче вопрос.

2) 26 3 = 78 (км)

Составим выражение:

3(12 + 14) = 78(км)

Ответ : 78 км.

Но не все дети понимают, что это за абстрактная величина – скорость сближения. Почему можно складывать, а в других случаях вычитать скорости двух различных участников движения, объединяя их общим названием. Если ваши ученики решают эту задачу другим способом, не старайтесь их перетянуть на свою сторону. Для кого-то еще не настало время это понять, а кому-то первый способ вообще никогда не будет доступным.

2 способ:

1)12 3 = 36 (км) – путь первого велосипедиста до встречи

2)14 3 = 42 (км) – путь второго велосипедиста до встречи

3)36 + 42 = 78 (км) – расстояние между посёлками

Составим выражение:

12 3 + 14 3 = 78 (км)

Ответ : 78 км.

Постепенно, когда ребенок научится понимать такие задачи, сравнивая числовые выражения, можно показать, что оба способа взаимосвязаны, а заодно вспомнить распределительное свойство умножения:

12 3 + 14 3 = 3(12 + 14) = 78

Пример 2. В двух пачках было 54 тетради. Когда из первой пачки убрали 10 тетрадей, а из второй - 14 тетрадей, то в обеих пачках стало тетрадей поровну. Сколько было тетрадей в каждой пачке первоначально?

Как можно отобразить условие?

1.Составить таблицу:

Было

Убрали

Стало

1 пачка - ? 54 тет.

2 пачка – ?

10 тет.

14 тет.

поровну

2. Сделать рисунок

Забрали 14 шт.

Забрали 10 шт.

Поровну

Всего 54 шт.

Проанализируем решение задачи, обращая внимание на то, на какие вопросы мы даем ответы, выполняя каждое арифметическое действие:

1) Сколько всего тетрадей убрали из обеих пачек?

10 + 14 = 24 (шт.);

2) Сколько стало тетрадей в двух пачках?

    24 = 30 (шт.);

3) Сколько стало в каждой пачке тетрадей?

30: 2 = 15 (шт.);

4) Сколько было тетрадей в первой пачке первоначально?

    10 = 25 (шт.);

5) Сколько было тетрадей во второй пачке первоначально?

54 – 25 = 29 (шт.).

В 5 классе, вероятнее всего, ученик выберет именно такой способ решения задачи. А предложите ему решить эту задачу в 6 ил 7 классе. Возможно, ситуация изменится, и ученик будет решать ее с помощью уравнения. Выполняя те же действия, он не будет задумываться над многочисленными вопросами. Выбирая уравнение как средство решения задачи, очень быстро придет к тому же ответу.

Как же тогда будет выглядеть решение?

Пусть х тетрадей стало в каждой пачке после перекладывания,

тогда (х + 10) тетрадей было первоначально в первой пачке, а

(х + 14) тетрадей было первоначально во второй пачке.

Зная, что в двух пачках было 54 тетради, можно составить уравнение:

х + 10 + х + 14 = 54

В уравнении прослеживаются все те же действия, которые выполняются при арифметическом способе решения задачи.

х + х + (10 + 14) = 54; (1 действие арифметического способа)

2х = 54 – 24; (2 действие)

х = 30:2; (3 действие)

15 + 10 = 25 (шт.) (4 действие)

15 + 14 = 29 (шт.) (5 действие)

Ответ: 25 тетрадей, 29 тетрадей.

Но при этом никто не задает вопросов, что мы находим при выполнении каждого шага.

Своим ученикам я всегда показываю, что текст задач для 5-х или 9-х классов зачастую одинаков по смыслу. И практика показывает, что пятиклассники в состоянии разобраться с условием из задачника для 9 класса и даже составить уравнение. Решить такое уравнение, конечно же, пока не хватает знаний. Но при этом не каждому девятикласснику удается решить арифметическим способом задачу для 5 класса.

Школьники, обычно, выбирают алгебраический способ решения текстовых задач, к арифметическому они практически никогда не возвращаются. Они просто перестают видеть этот способ, увлекаясь введением переменных и составлением уравнений.

За что же мы ценим арифметический способ решения текстовых задач? Первое и главное за то, что при выполнении каждого арифметического действия учащийся задумывается над тем: «А что я нашел в результате?» Он представляет, о чем идет речь в задаче, так как каждое действие имеет наглядное и конкретное истолкование. В результате активно развивается логическое мышление. В процессе вычислений, измерений, поиска решения задач у ученика формируются познавательные универсальные учебные действия, формирование которых является важнейшей задачей современной системы основного общего образования.

Текстовые задачи изучаются в течение всего школьного курса математики. Но научить понимать задачи, анализировать условие, рассуждать и находить рациональные способы решения необходимо именно в 5-6 классах, пока уровень сложности их невелик, а сама задача является одной из самых важных категорий. На легком постигается сложное.

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть, развивает естественный язык, готовит школьников к дальнейшему обучению.

Арифметические способы решения текстовых задач позволяют строить план решения с учетом взаимосвязей между известными и неизвестными величинами (с учетом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью составления и решения обратной задачи, то есть, формировать и развивать важные общеучебные умения и навыки.

Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

Великий Д.Пойа сказал: “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”. Если мы научим детей решать задачи - мы не только повысим интерес к самому предмету, окажем значительное влияние на формирование их математического мышления, что способствует успешному освоению новых знаний в других областях.