* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Защита атмосферы Для атмосферы характерна чрезвычайно высокая динами чность, обусловленная как бы стрым перемещением воздушных масс в латера льном и вертикальном направлениях, так и вы сокими скоростями, разнообр азием протекающих в ней физико-химических реакций. Атмо сфера рассматри вается как огромный «химический котел», который находится под воздейст вием многочисленных и изменчивых антропогенных и природных факторов. Г азы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реак ционной способностью. Пыль и сажа, возникающие при сгорании топлива, лес ных пожарах, сорбируют тяжелые ме таллы и радионуклиды и при осаждении н а поверхность могут загрязнить обширные террито рии, проникнуть в орган изм человека через органы дыхания. Загрязнением атмосферы считается прямое или косвенное введени е в нее любого вещества в таком количестве, которое воздействует на каче ство и состав наружного воздуха, нанося вред людям, живой и неживой приро де, экосистемам, строительным материалам, природным ресурсам – всей окр ужающей среде. Очистка воздуха от при месей. Для защиты атмосферы о т негативного антропогенного воздействия используют следующие меры: - экологизацию технологических процессов; - очистку газовых выбросов от вредных примесей; - рассеивание газовых выбросов в атмосфере; - устройство санитарно-защитных зон, архитектурно-планировочные решени я. Безотходная и малоотх одная технология Экологизация тех проц ессов – это создание замкнутых технологических циклов, безотходных и м алоотходных технологий, исключающих попадание в атмосферу вредных заг рязняющих веществ. Наиболее надежным и самым экономичным способом охраны биосферы от вред ных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые пр едложен академиком Н.Н. Семеновым. Под ним подразумевается создание опти мальных технологических систем с замкнутыми материальными и энергети ческими потоками. Такое производство не должно иметь сточных вод, вредн ых выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функциониро вания производств, при рациональном использовании всех компонентов сы рья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потреблен ие – вторичные сырьевые ресурсы). Конечно же, понятие «безотходное производство» имеет несколько условн ый характер; это идеальная модель производства, так как в реальных услов иях нельзя полностью ликвидировать отходы и избавиться от влияния прои зводства на окружающую среду. Точнее следует называть такие системы мал оотходными, дающими минимальные выбросы, при которых ущерб природным эк осистемам будет минимален. Малоотходная технология является промежуто чной ступенью при создании безо тходного про изводства. В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных техноло гий: 1) разработка и внедрение п ринципиально новых технологических процессов и систем, работающих по з амкнутому циклу, позволяющих исключить образование основного количест ва отходов; 2) переработка отходов производства и потребления в качес тве вторичного сырья; 3) создание территориально-промышленных комплексов с замк нутой структурой материальных потоков сырья и отходов внутри комплекс а. Важность экономного и рационального использования природных р есурсов не требует обоснований. В мире непрерывно растет потребность в с ырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациона льное использования вторичных ресурсов требует принятия межотраслевы х решений. Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образов ание основного количества отходов, является основным направлением тех нического прогресса. Очистка газовых выбро сов от вредных примесей Газовые выбросы класс ифицируются по организации отвода и контроля – на организованные и нео рганизованные, по температуре на нагретые и холодные. Организованный выброс – это выброс, поступающий в атмосф еру через специально сооруженные газоходы, воздуховоды, трубы. Неорганизованные называют промышленные выбросы, поступающие в атмосфе ру в виде ненаправленных потоков газа в результате нарушения герметичн ости оборудования. Отсутствие или неудовлетворительной работы оборудо вания по отсосу газа в местах загрузки, выгрузки и хранения продукта. Для снижения загрязнения атмосферы от промышленных выбросов использую т системы очистки газов. Под очисткой газов понимают отделение от газа и ли превращение в безвредное состояние загрязняющего вещества, поступа ющего от промышленного источника. Средства защиты атмосферы должны ограничивать налич ие вредных веществ в воздухе среды обитания человека на уровне не выше П ДК. Во всех случаях должно соблюдаться усло вие: С+Сф 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%. Диаметр частиц, ул авливаемых циклоном на 50%, можно опреде лить по эмпирической формуле Гидравлическое сопротивление высокопроизводительных циклонов соста вляет около 1080 Па. Ци клоны широко применяют при грубой и средней очистке газа от аэрозолей. Другим типом центробежного пылеуловителя служит ротоклон, состоящий и з ротора и вентилятора, помещенного в осадительный кожух. Лопасти вентил ятора, вращаясь, направляют пыль в канал, который ведет в приемник пыли. Циклонные аппараты наиболее распространены в промышленности, так как у них отсутствуют движущиеся части в аппарате и высокая надежнос ть работы при температуре газов до 500 0 С, улавл ивание пыли в сухом виде, почти постоянное гидравлическое сопротивлени е аппарата, простота изготовления, высокая степень очистки. Недостатки: высокое гидравлическое сопротивление 1250-1500 Па, плохое улавлив ание частиц размером меньше 5мкм. Для очистки газов используют также фильтры. Фильтрация основана на прохождении очищаемого газа через различные фи льтрующие материалы. Фильтрующие перегородки состоят из волокнистых и ли зернистых элементов и условно подразделяются на следующие типы. Гибкие пористые перегородки – тканевые материалы из природных, синтет ических или минеральных волокон, нетканные волокнистые материалы (войл оки, бумаги, картон) ячеистые листы (губчатая резина, пенополиуретан, мемб ранные фильтры). Фильтрация - весьма распространенный прием тонкой очистки газов. Ее п реимущества - сравн ительная низкая стоимость оборудования (за исключением металлокерамич еских фильтров) и высокая эффективность тонкой очистки. Недостатки филь трации высокое гидравлическое сопротивление и быстрое забивание фильт рующего материала пылью. Очистка выбросов газообразных веществ промышленных пред приятий В настоящее время, когд а безотходная технология находится в периоде становления и полностью б езотходных предприятий еще нет, основной задачей газоочистки служит до ведение содержания токсичных примесей в газовых примесях до предельно допустимых концентраций (ПДК), установленных санитарными нормами. Промышленные способы очистки газовых выбросов от газо- и парообразных т оксичных примесей можно разделить на пять основных групп: 1 Метод абсорбции – заключается в поглощении отде льных компонентов газообразной смеси абсорбентом (поглотителем) в каче стве которого выступает жидкость. Абсорбенты, применяемые в промышленности, оце ниваются по следующим показателям: 1) абсорбционная ем кость, т. е. растворимость извлекаемого компонента в поглотителе в завис имости от температуры и давления; 2) селективность, ха рактеризуемая соотношением растворимостей разделяемых газов и скорос тей их абсорбции; 3) минимальное давл ение паров во избежание загрязнения очищаемого газа парами абсорбента; 4) дешевизна; 5) отсутствие корро зирующего действия на аппаратуру. В качестве абсорбентов применяют воду, растворы аммиака, едких и карбонатных щелоч ей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, окс идов марганца и магния, сульфат магния и др. Например, для очистки газов от аммиака, хлористого и фтористого водорода в качестве абсорбента исполь зуют воду, для улавливания водяных паров – серную кислоту, для улавлива ния ароматических углеводородов – масла. Абсорбционная очистка - непрерывный и, как правило, ц иклический процесс, так как поглощение примесей обычно сопровождается регенерацией поглотительного раствора и его возвращением в начале цик ла очистки. При физической абсорбции регенерацию абсорбента проводят н агреванием и снижением давления, в результате чего происходит десорбци я поглощенной газовой примеси и ее концентрированно. Для реализа ции процесса очистки применяют абсорберы различных конструкций (плено чные, насадочные, трубчатые и др.). Наиболее распространен насадочный скр уббер, применяемый для очистки газов от диоксида серы, сероводорода, хло роводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивно го гидродинамического режима этих реакторов, работающих при скорости г аза 0,02-0,7 м/с. Объемы ап паратов поэтому велики и установки громоздки. Абсорбционные методы характеризуются непрерывностью и универсальн остью процесса, экономичностью и возможностью извлечения больших коли честв примесей из газов. Недостаток этого метода в том, что насадочные ск рубберы, барботажные и даже пенные аппараты обеспечивают достаточно вы сокую степень извлечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэтому технол огические схемы мокрой очистки, как правило, сложны, многоступенчаты и о чистные реакторы (особенно скрубберы) име ют большие объемы. Любой процесс мокрой абсорбционной очистки выхлопных газов от газо- и парообразных примесей целесообразен только в случае его цикличн ости и безотходности. Но и циклические системы мокрой очистки конкур ентоспособны только тогда, когда они совмещены с пылеочисткой и охлажде нием газа. 2. Метод хемосорбции – основан на поглощении газов и паров твердыми и жид кими поглотителями, в результате чего образуются мало летучие и малорас творимые соединения. Большинство хемосорбционных процессов газоочист ки обратимы, т. е. при повышении температуры поглотительного раствора хи мические соединения, образовавшиеся при хемосорбции, разлагаются с рег енерацией активных компонентов поглотительного раствора и с десорбцие й поглощенной из газа примеси. Этот прием положен в основу регенерации х емосорбентов в циклических системах газоочистки. Хемосорбция в особен ности применима для тонкой очистки газов при сравнительно небольшой на чальной концентрации примесей. 3. Метод адсорбции - основан на улавливании вредных газовых примесей поверхностью твердых тел, высоко пористых материалов, обладающих развитой удельной поверхностью. Адсорбционные методы применяют для различных технологических целей - разделение парогазовых смесей на компоненты с выделени ем фракций, осушка газов и для санитарной очистки газовых выхлопов. В пос леднее время адсорбционные методы выходят на первый план как надежное с редство защиты атмосферы от токсичных газообразных веществ, обеспечив ающее возможность концентрирования и утилизации этих веществ. Промышленные адсорбенты, чаще всего применяемые в газоочистке, - это активированный уго ль, силикагель, алюмогель, природные и синтетические цеолиты (молекулярн ые сита). Основные требования к промышленным сорбентам - высокая поглотительная сп особность, избирательность действия (селективность), термическая устой чивость, длительная служба без изменения структуры и свойств поверхнос ти, возможность легкой регенерации. Чаще всего для санитарной очистки га зов применяют активный уголь благодаря его высокой поглотительной спо собности и легкости регенерации. Известны различные конструкции адсорбентов (вертикальн ые, используемые при малых расходах, горизонтальные, при больших расхода х, кольцевые). Очистку газа осуществляют через неподвижные слои адсорбен та и движущиеся слои. Очищаемый газ проходит адсорбер со скоростью 0,05-0,3 м/с. После очистки ад сорбер переключается на регенерацию. Адсорбционная установка, состоящ ая из нескольких реакторов, работает в целом непрерывно, так как одновре менно одни реакторы находятся на стадии очистки, а другие - на стадиях регенерации, ох лаждения и др. Реген ерацию проводят нагреванием, например выжиганием органических веществ, пропусканием острого или перегретого пара, воздуха, инертного газа (азо та). Иногда адсорбент, потерявший активность (экранированный пылью, смол ой), полностью заменяют. Наиболее перспективны непрерывные циклические процессы адсорбцион ной очистки газов в реакторах с движущимся или взвешенным слоем адсорбе нта, которые характеризуются высокими скоростями газового потока (на по рядок выше, чем в периодических реакторах), высокой производительностью по газу и интенсивностью работы. Общие достоинства адсорбционных методов очистки газов: 1) глубокая очистка газов от токсичных примесей; 2) сравнительная ле гкость регенерации этих примесей с превращением их в товарный продукт и ли возвратом в производство; таким образом осуществляется принцип безо тходной технологии. Адсорбционный метод особенно рационален для удале ния токсических примесей (органических соединений, паров ртути и др.), сод ержащихся в малых концентрациях, т. е. как завершающий этап санитарной оч истки отходящих газов. Недостатки большинства адсорбционных установок - периодичность 4. Метод каталитического окисления – основан на удалении примес ей из очищаемого газа в присутствии катализаторов. Действие катализаторов проявляется в промежуточном химическом взаимодействии катализатора с реагирующими веществами, в р езультате чего образуется промежуточные соединения. В качестве катализаторов применяют металлы и их соединения (оксиды меди, марганца и др.) Катализаторы имеют вид шаров, к олец или другую форму. Особенно широко этот метод используется для очист ки выхлопных газов ДВС. В результате каталитических реакций примеси, находящиес я в газе, превращаются в другие соединения, т. е. в отличие от рассмотренны х методов примеси не извлекаются из газа, а трансформируются в безвред ные соединения, присутстви е которых допустимо в выхлопном газе, либо в соединения, ле гко удаляемые из газового потока. Если образовавшиеся вещества подлежа т удалению, то тре буются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоки х температурах и обычном давлении, а также при весьма малых начальных ко нцентрациях примесей. Каталитические методы позволяют утилизировать р еакционную теплоту, т.е. создавать энерготехнологические системы. Устан овки каталитической очистки просты в эксплуатации и ма логабаритны. Недостаток многих процессов каталитической очистки - образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбц ия), что усложняет установку и снижает общий экономический эффект. 5.Термический метод заключается в очистке газов перед выбросом в атмосферу путем высокотемпературного дожигания. Термические методы обезвреживания газовых выбросов применимы при высокой концентрации горючих органических загрязнителе й или оксида углерода. Простейший метод - факельное сжигание - возможен, когда концентра ция горючих загрязнителей близка к нижнему пределу воспламенения. В это м случае примеси служат топливом, температура процесса 750- 900 °С и теплоту горения прим есей можно утилизировать. Когда концентрация горючих примесей меньше нижнего предела воспламене ния, то необходимо подводить некоторое количество теплоты извне. Чаще вс его теплоту подводят добавкой горючего газа и его сжиганием в очищаемом газе. Горючие газы проходят систему утилизации теплоты и выбрасываются в атмосферу. Такие энерготехнологические схемы применяют при достаточ но высоком содержании горючих примесей, иначе возрастает расход добавл яемого горючего газа. Рассеивание пылегазовых выбросов в атмосферу. При любом способе очис тке, часть пыли и газов остается в воздухе, выбрасываемом в атмосферу. Рас сеивание газовых выбросов используют для снижения опасных концентраци й примесей до уровня соответствующего ПДК. Используют различные технол огические средства для осуществления процесса рассеивания: трубы, вент иляционные устройства. На процессы рассеивания выбросов существенное влияние оказывает состо яние атмосферы, расположение предприятий и источников выбросов, характ ер местности и т. д. Горизонтальное перемещение примесей определяется в основном скоростью ветра, а вертикальное – распределением температур в вертикальном направлении. При распределении концентрации вредных веществ в атмосфере над факело м организованного высокого источника выброса выделяют 3 зоны загрязнен ия атмосферы: Рис. 1. Переброс факела выбросов, характеризующийся относительно невысоким с одержанием вредных веществ в приземном слое атмосферы. 2. Зона задымления с максимальным содержанием вредных веществ и постепен ное снижение уровня загрязнения. Эта зона является наиболее опасной для населения. Размеры этой зоны в зависимости от метеорологических услови й находятся в пределах 10-49 высоты трубы. 3. Зона постепенного сниж ения уровня загрязнения. При невозможности достигнуть ПДК очисткой иногда при меняют многократное разбавление токсичных веществ или выброс газов че рез высокие дымовые трубы для рассеивания примесей в верхних слоях атмо сферы. Теоретическое определение концентрации примесей в нижних слоях атмосферы в зависимости от высоты трубы и других факторов связано с зако нами турбулентной диффузии в атмосфере и пока разработано не полностью. Высоту трубы, необходимую, чтобы обеспечить ПДК токсичных веществ в нижн их слоях атмосферы, на уровне дыхания, определяют по приближенным формул ам, например: ПДВ = где ПДВ - предельно допустимый выброс вредных примесей в атмосферу, обеспечивающий концен трацию этих веществ в приземном слое воздуха не выше ПДК, г/с; Н - высота трубы, м; V - объем газового выброса, м^с; ∆ t - разность между температурами газового выброса и окружаю щего воздуха, °С; А - коэффициент, определяющий условия вертикального и горизонтального рас сеив ания вредных веществ в воздухе; F - безразмерный к оэффициент, учи тывающий скорость седиментации вредных веществ в атмос фере; т - коэффициент, учитывающий условия выхода газа из устья тр убы, его определяют графически или приближенно по формуле: Метод достижения ПДК с помощью «высоких труб» служит лишь паллиативом, т ак как не предохраняет атмосферу, а лишь переносит загрязнения из одного района в другие. Устройство санитарно-защитных зон Санитарно-з ащитная зона - это полоса, отделяющая источники промышленного загрязнен ия от жилых или общественных зданий для защиты населения от влияния вред ных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от класса пр оизводства, степени вредности и количества, выделенных в атмосферу веще ств, и принимают равной от 50 до 1000 м. Санитарно-защитная зона должна быть благоустроена и озеленена. Различают 3 типа зон: Круговые, при полном окружении предприятия жилой застройкой; Секторные, при частичном окружении предприятия жилой застройкой и прим ыкания завода к естественной природной преграде. Трапециидальные, при отрыве предприятия от селитебной зоны. Устройство са н-защитных зон – вспомогательное средство защиты, так как очень дорогос тоящее мероприятие, это увеличение протяженности дорог, коммуникаций и т.д. Архитектур но-планировочные мероприятия включают правильное взаимное размещение источников выброса в населенных пунктах с учетом направления ветра, выб ор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход на селенных пунктов и др.

В настоящее время перечень веществ, загрязняющих атмосферу на предприятиях и в селитебной зоне широк. К антропогенным источникам загрязнений атмосферы относят газы, аэрозоли и промышленные пыли. Основной физической характеристикой примесей атмосферы является концентрация – масса вещества (мг) в единице объема воздуха при нормальных условиях. Концентрация примесей определяет физическое, химическое и токсической воздействия веществ на окружающую среду и человека и служит основным параметром при нормировании содержания примесей в атмосфере. Для оценки качества компонентов окружающей среды введены ряд критериев качества к которым относятся: предельно допустимая концентрация вещества (ПДК), предельно допустимый выброс (сброс) (ПДВ, ПДС), предельно допустимая доза (ПДД) и другие. Эти нормативы установлены для большинства веществ, которые могут оказаться в окружающей среде и которые способны оказать негативное воздействие на здоровье человека или компоненты природной среды.

Для обеспечения нормативных уровней концентраций вредных веществ в воздухе населенных мест и вблизи промышленных предприятий на практике реализуются следующие варианты защиты атмосферного воздуха:

Вывод токсичных веществ из помещений общеобменной вентиляцией;

Локализация токсичных веществ в зоне их образования с помощью местной вентиляции с последующей рециркуляцией;

Локализация токсичных веществ в зоне их образования с помощью местной вентиляции с последующей очисткой и выбросом в атмосферу;

Очистка технологических газовых выбросов в специальных аппаратах и их выброс в атмосферу;

Очистка отработавших газов энергоустановок (двигателей внутреннего сгорания) в специальных агрегатах и их выброс в атмосферу или производственную зону;

Размещение предприятий и объектов по отношению к селитебной застройке с учетом розы ветров и рельефа.

Таким образом, все средства защиты атмосферы от вредных производственных выбросов можно объединить в две группы:

1) пассивные – создание условий для рассеивания вредных примесей в атмосферном воздухе (санитарно-защитные зоны, высокие трубы);

2) активные – средства осуществляющие очистку воздуха от разнообразных примесей (пылеуловители, туманоуловители, аппараты для улавливания паров и газов, аппараты многоступенчатой очистки).

Пассивные методы обеспечения требуемых уровней безопасности атмосферного воздуха. В целях обеспечения безопасности населения и в соответствии с Федеральным Законом «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 № 52-ФЗ, вокруг объектов и производств, являющихся источниками воздействия на среду обитания и здоровье человека устанавливается специальная территория с особым режимом использования - санитарно-защитная зона (СЗЗ), размер которой обеспечивает уменьшение воздействия загрязнения на атмосферный воздух (химического, биологического, физического) до значений, установленных гигиеническими нормативами. По своему функциональному назначению санитарно-защитная зона является защитным барьером, обеспечивающим уровень безопасности населения при эксплуатации объекта в штатном режиме. Для объектов, являющихся источниками воздействия на среду обитания разрабатывается проект обоснования размера санитарно-защитной зоны.

Ориентировочный размер санитарно-защитной зоны по классификации определяется расчетами ожидаемого загрязнения атмосферного воздуха (с учетом фона) и уровнями физического воздействия на атмосферный воздух, уточненных результатами натурных исследований и измерений. Критерием для определения размера санитарно-защитной зоны является не превышение на ее внешней границе и за ее пределами ПДК (предельно допустимых концентраций) загрязняющих веществ для атмосферного воздуха населенных мест, ПДУ (предельно допустимых уровней) физического воздействия на атмосферный воздух.

В зависимости от характеристики выбросов для промышленного объекта и производства, по которым ведущим для установления санитарно-защитной зоны фактором является химическое загрязнение атмосферного воздуха, размер санитарно-защитной зоны устанавливается от границы промплощадки и/или от источника выбросов загрязняющих веществ. От границы территории промплощадки:

От организованных и неорганизованных источников при наличии технологического оборудования на открытых площадках;

В случае организации производства с источниками, рассредоточенными по территории промплощадки;

При наличии наземных и низких источников, холодных выбросов средней высоты.

От источников выбросов (рис.6.4): при наличии высоких, средних источников нагретых выбросов. По мере удаления от источника выброса, по направлению ветра условно выделяют три зоны загрязнения атмосферы:

Зоны переброса факела с относительно невысоким содержанием вредных веществ;

Зоны задымления с максимальным содержанием вредных веществ;

Зоны постепенного снижения уровня загрязнения.

Максимальные концентрации (с м ) примесей в приземной слое можно измерить с помощью приборов или рассчитать с соответствии с «Методикой расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий ОНД-86».

Рисунок 6.4 – Классификации источников загрязнения атмосферы

Максимальные концентрации прямо пропорциональны производительности источника и обратно пропорциональны квадрату его высоты над землей:

(6.1)

Где А – коэффициент, зависящий от температурной стратификации атмосферы;

М – масса вредного вещества, выбрасываемого в атмосферу в единицу времени (г/с);

F – безразмерный коэффициент, учитывающий скорость оседания вредных веществ в воздухе;

m и n – коэффициенты, учитывающие условия выхода газовоздушной смеси из устья источника выброса;

ΔΤ – разность между температурой выбрасываемой газовоздушной смеси и температурой окружающего воздуха (ºC);

Η – высота источника выброса над уровнем земли, м;

V 1 – расход воздушной смеси (м 3 /с);

Η – безразмерный коэффициент, учитывающий влияние рельефа местности.

Используя расчетные методы, можно определить величину ПДВ для обеспечения в приземном слое ПДК вредных веществ. Если же реальные выбросы превышают ПДВ, в системе выброса используют аппараты для очистки газов от примесей, т.е. применяют активные методы обеспечения требуемых уровней безопасности атмосферного воздуха .

Примеси вредных веществ могут находиться в атмосферном воздухе в трех агрегатных состояниях: жидком, твердом, газообразном. Именно агрегатным состоянием загрязнителей обусловливается выбор технических средств очистки воздуха: пылеуловители, туманоуловители, аппараты для улавливания паров и газов, аппараты многоступенчатой очистки, используемые при сложном составе выбрасываемых предприятием загрязнителей (рис. 6.5).

Многие производственные процессы сопровождаются значительным выделением пыли. Пыль – это мельчайшие твердые частицы, способные находиться в воздухе или промышленных газах длительное время во взвешенном состоянии. Виды классификаций производственной пыли приведены на рисунке 6.6. Вредность пыли зависит от ее химического состава, концентрации в воздухе и крупности частиц. В легких человека при дыхании задерживаются частицы размером от 0,2 до 7 мкм. Пыль вызывает такие заболевания, как пневмокониозы, дерматиты, экземы, коньюктивиты и др. Очистка воздуха от пыли может быть грубой, при которой задерживается пыль с размером частиц более 100 мкм, средней – с размером пылинок 10 – 100 мкм и тонкой – менее 10 мкм.

Наиболее простыми и широко распространенными от крупной не слипающейся пыли являются аппараты сухой очистки воздуха и газов. К их числу относятся разнообразные по конструкции циклоны, принцип действия которых основан на использовании центробежной силы, воздействующей на частицы пыли во вращающемся потоке воздуха. Для разделения газового потока на очищенный и загрязненный пылью, используются жалюзийные пылеотделители. Эти устройства просты. Применяются для очистки дымовых газов от крупнодисперсной пыли при температуре 450-600ºC. Ротационные пылеуловители предназначены для очистки воздуха от частиц размером более 5мкм и относятся к аппаратам центробежного действия, которые одновременно с перемешиванием воздуха очищают его от пыли.

Аппараты мокрой очистки газов (скубберы) имеют широкое применение. Они характеризуются высокой степенью эффективности очистки от мелкодисперсной пыли с


Рисунок 6.5 – Виды аппаратов для очистки воздуха от производственных выбросов


Рисунок 6.6 – Классификации производственной пыли

размером более 0.3 мкм и возможностью очистки от горячих и взрывоопасных газов. Принцип действия основан на осаждении частиц пыли на поверхности капель или пленке жидкости, в качестве которой используется либо вода (при очистке от пыли), либо химический раствор (при улавливании одновременно с пылью вредных газообразных компонентов).

Аппараты фильтрационной очистки предназначены для тонкой очистки газов за счет осаждения частиц пыли на поверхности пористых перегородок. Осаждение частиц в порах происходит в результате совокупного действия касания, диффузного, инерционного и гравитационного процессов. Фильтры классифицируются по: типу фильтровальной перегородки, конструкции фильтра и его назначения, тонкости очистки и т.д. Большинство фильтрующих установок работает в 2 режимах: фильтрации и регенерации, т.е. очистки от уловленной пыли.

Аппараты электрофильтрационной очистки предназначены для очистки объемных расходов газа от пыли и тумана (масляного). Их принцип действия основан на осаждении частиц пыли в электрическом поле. Достоинствами электрофильтров являются высокая эффективность очистки при соблюдении режимов работы, сравнительно низкие энергозатраты, а недостатками – крупные габариты и большая металлоёмкость.

Существует 2 типа паро- и газоулавливающих установок:

1) обеспечивает санитарную очистку выбросов без последующей утилизации уловленных примесей, количество которых невелико, но которые даже в малых концентрациях опасны для человека;

2) обеспечивают очистку от большого количества веществ с последующей концентрацией их и использованием в качестве исходного сырья в различных технологических процессах.

Методы очистки промышленных выбросов от газообразных и парообразных веществ по характеру протекания физико-химических процессов делят на 4 группы:

1) промывка выбросов растворителями примесей (абсорбция) - основан на поглощении вредных газообразных примесей жидкими поглотителями: водой, раствором соды, аммиака. Например, газообразные цианистые соединения абсорбируют 5% раствором железного купороса.

2) промывка растворами реагентов, химически связывающих примеси (хемосорбция) заключается в поглощении вредных веществ с твердыми или жидкими поглотителями, в результате чего образуются малолетучие или малорастворимые химические соединения. Например, мышьяково-щелочной раствор используют для очистки от сероводорода.

3) поглощение газообразных примесей твердыми телами ультрамикроскопической структурой (адсорбция) – основан на поглощении вредных примесей поверхностью твердых пористых тел – адсорбентов. Чем больше пористость адсорбента, том больше его эффективность. Адсорбентами выступают: активированный уголь, глинозем, цеолиты, сланцевая зола. Например, на АЭС сорбция радиоактивных продуктов осуществляется угольными фильтрами.

4) термическая нейтрализация отходящих газов обеспечивает окисление токсичных примесей в газовых выбросах до менее токсичных при наличии свободного кислорода и высокой температуры газов. Метод применяется при больших объёмах газа и высоких концентрациях газа. Существует 3 схемы применения:

Прямое сжигание в пламени применяется при высокой температуре отходящих газов;

Термическое окисление при температуре 600-800 ºC применяется, если отходящие газы имеют высокую температуру, но в них нет либо кислорода, либо концентрация горючих газов низка;

Каталитическое сжигание при температуре 250-450 ºC предназначен для превращения вредных примесей в горячих газах в безвредные или менее вредные с использованием катализаторов.

Процесс очистки газов от твердых и капельных примесей в различных аппаратах характеризуется несколькими параметрами:

1) Производительностью – объёмом воздуха, который способно очистить данное устройство в единицу времени (м 3 /ч, м 3 /с);

2) Общим коэффициентом очистки – отношением массы пыли, уловленной аппаратом, к массе поступившей в него пыли за единицу времени, %:

Где Ф вх, Ф вых – содержание фракции пыли в воздухе на входе и выходе пылеуловителя, %.

Эффективность пылеулавливания высокоэффективных фильтров может выражаться через коэффициент проскока ε, представляющий собой отношение концентрации пыли за фильтром к концентрации пыли перед фильтром в процентах и определяется по формуле:

(6.4)

4) Пылеемкостью , представляющей количество пыли, которое способен уловить и удержать фильтр (г, кг).

5) Гидравлическим сопротивлением пылеуловителя

6) Расходом электроэнергии на очистку воздуха (кВт·ч на 1000 м 3 /ч), воды (л/м 3), масла (кг/год) и т.д.

7) Капитальными затратами на воздухоочистительную установку (руб.)

8) Стоимостью очистки воздуха (рублей на 1000 м 3 воздуха).


Похожая информация.


Защита атмосферы

В целях защиты атмосферы от загрязнения применяют следующие экозащитные мероприятия:

– экологизация технологических процессов;

– очистка газовых выбросов от вредных примесей;

– рассеивание газовых выбросов в атмосфере;

– соблюдение нормативов допустимых выбросов вредных веществ;

– устройство санитарно-защитных зон, архитектурно-планировочные решения и др.

Экологизация технологических процессов – это в первую очередь создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ. Кроме того необходима предварительная очистка топлива или замена его более экологичными видами, применение гидрообеспыливания, рециркуляция газов, перевод различных агрегатов на электроэнергию и др.

Актуальнейшая задача современности – снижение загрязнения атмосферного воздуха отработанными газами автомобилей. В настоящее время ведется активный поиск альтернативного, более «экологически чистого» топлива, чем бензин. Продолжаются разработки двигателей автомобилей, работающих на электроэнергии, солнечной энергии, спирте, водороде и др.

Очистка газовых выбросов от вредных примесей. Нынешний уровень технологий не позволяет добиться полного предотвращения поступления вредных примесей в атмосферу с газовыми выбросами. Поэтому повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли) и токсичных газо- и парообразных примесей (NО, NО2, SO2, SO3 и др.).

Для очистки выбросов от аэрозолей применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки: сухие пылеуловители (циклоны, пылеосадительные камеры), мокрые пылеуловители (скрубберы и др.), фильтры, электрофильтры (каталитические, абсорбционные, адсорбционные) и другие методы для очистки газов от токсичных газо- и парообразных примесей.

Рассеивание газовых примесей в атмосфере – это снижение их опасных концентраций до уровня соответствующего ПДК путем рассеивания пылегазовых выбросов с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. К сожалению, этот метод позволяет снизить локальное загрязнение, но при этом проявляется региональное.

Устройство санитарно-защитных зон и архитекгурно-планировочные мероприятия.

Санитарно-защитная зона (СЗЗ) – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина этих зон составляет от 50 до 1000 м в зависимости от класса производства, степени вредности и количества выделяемых в атмосферу веществ. При этом граждане, чье жилище оказалось в пределах СЗЗ, защищая свое конституционное право на благоприятную среду, могут требовать либо прекращения экологически опасной деятельности предприятия, либо переселения за счет предприятия за пределы СЗЗ.

Министерство Образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

ИНЖЕНЕРНО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

Гуманитарный факультет

Кафедра современного естествознания и экологии

КОНТРОЛЬНАЯ работа по дисциплине

ПРИРОДООХРАННЫЕ СИСТЕМЫ И СООРУЖЕНИЯ

На тему: Защита атмосферы

Санкт-Петербург


Защита атмосферы

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается как огромный «химический котел», который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Загрязнением атмосферы считается прямое или косвенное введение в нее любого вещества в таком количестве, которое воздействует на качество и состав наружного воздуха, нанося вред людям, живой и неживой природе, экосистемам, строительным материалам, природным ресурсам – всей окружающей среде.

Очистка воздуха от примесей.

Для защиты атмосферы от негативного антропогенного воздействия используют следующие меры:

Экологизацию технологических процессов;

Очистку газовых выбросов от вредных примесей;

Рассеивание газовых выбросов в атмосфере;

Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Безотходная и малоотходная технология.

Экологизация технологических процессов – это создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ.

Наиболее надежным и самым экономичным способом охраны биосферы от вредных газовых выбросов является переход к безотходному производству, или к безотходным технологиям. Термин «безотходная технология» впервые предложен академиком Н.Н. Семеновым. Под ним подразумевается создание оптимальных технологических систем с замкнутыми материальными и энергетическими потоками. Такое производство не должно иметь сточных вод, вредных выбросов в атмосферу и твердых отходов и не должно потреблять воду из природных водоемов. То есть понимают принцип организации и функционирования производств, при рациональном использовании всех компонентов сырья и энергии в замкнутом цикле: (первичные сырьевые ресурсы – производство – потребление – вторичные сырьевые ресурсы).

Конечно же, понятие «безотходное производство» имеет несколько условный характер; это идеальная модель производства, так как в реальных условиях нельзя полностью ликвидировать отходы и избавиться от влияния производства на окружающую среду. Точнее следует называть такие системы малоотходными, дающими минимальные выбросы, при которых ущерб природным экосистемам будет минимален. Малоотходная технология является промежуточной ступенью при создании безотходного производства.

В настоящее время определилось несколько основных направлений охраны биосферы, которые в конечном счете ведут к созданию безотходных технологий:

1) разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов;

2) переработка отходов производства и потребления в качестве вторичного сырья;

3) создание территориально-промышленных комплексов с замкнутой структурой материальных потоков сырья и отходов внутри комплекса.

Важность экономного и рационального использования природных ресурсов не требует обоснований. В мире непрерывно растет потребность в сырье, производство которого обходится всё дороже. Будучи межотраслевой проблемой, разработка малоотходных и безотходных технологий и рациональное использования вторичных ресурсов требует принятия межотраслевых решений.

Разработка и внедрение принципиально новых технологических процессов и систем, работающих по замкнутому циклу, позволяющих исключить образование основного количества отходов, является основным направлением технического прогресса.

Очистка газовых выбросов от вредных примесей

Газовые выбросы классифицируются по организации отвода и контроля – на организованные и неорганизованные, по температуре на нагретые и холодные.

Организованный промышленный выброс – это выброс, поступающий в атмосферу через специально сооруженные газоходы, воздуховоды, трубы.

Неорганизованные называют промышленные выбросы, поступающие в атмосферу в виде ненаправленных потоков газа в результате нарушения герметичности оборудования. Отсутствие или неудовлетворительной работы оборудования по отсосу газа в местах загрузки, выгрузки и хранения продукта.

Для снижения загрязнения атмосферы от промышленных выбросов используют системы очистки газов. Под очисткой газов понимают отделение от газа или превращение в безвредное состояние загрязняющего вещества, поступающего от промышленного источника.

Механическая очистка газов

Она включает сухие и мокрые методы.

Очистка газов в сухих механических пылеуловителях.

К сухим механическим пылеуловителям относятся аппараты, в которых использованы различные механизмы осаждения: гравитационный (пылеосадительная камера), инерционный (камеры, осаждение пыли в которых происходит в результате изменения направления движения газового потока или установки на его пути препятствия) и центробежный.

Гравитационное осаждение основано на осаждении взвешенных частиц под действием силы тяжести при движении запыленного газа с малой скоростью без изменения направления потока. Процесс проводят в отстойных газоходах и пылеосадительных камерах(рис.1). Для уменьшения высоты осаждения частиц в осадительных камерах установлено на расстоянии 40-100 мм множество горизонтальных полок, разбивающих газовый поток на плоские струи. Гравитационное осаждение действенно лишь для крупных частиц диаметром более 50-100 мкм, причем степень очистки составляет не выше 40-50%. Метод пригоден лишь для предварительной, грубой очистки газов.

Пылеосадительные камеры (рис. 1 ). Осаждение взвешенных в газовом потоке частиц в пылеосадительных камерах происходит под действием сил тяжести. Простейшими конструкциями аппаратов этого типа являются отстойные газоходы, снабжаемые иногда вертикальными перегородками для лучшего осаждения твердых частиц. Для очистки горячих печных газов широко применяют многополочные пылеосадительные камеры.Пылеосадительная камера состоит: 1 - входной патрубок; 2 - выходной патрубок; 3 - корпус; 4 - бункер взвешенных частиц.

Инерционное осаждение основано на стремлении взвешенных частиц сохранять первоначальное направление движения при изменении направления газового потока. Среди инерционных аппаратов наиболее часто применяют жалюзийные пылеуловители с большим числом щелей (жалюзи). Газы обеспыливаются, выходя через щели и меняя при этом направление движения, скорость газа на входе в аппарат составляет 10-15 м/с. Гидравлическое сопротивление аппарата 100 - 400 Па (10 - 40 мм вод. ст.). Частицы пыли с d < 20 мкм в жалюзийных аппаратах не улавливаются. Степень очистки в зависимости от дисперсности частиц составляет 20-70%. Инерционный метод можно применять лишь для грубой очистки газа. Помимо малой эффективности недостаток этого метода - быстрое истирание или забивание щелей.

Данные аппараты отличаются простотой изготовления и эксплуатации, их достаточно широко используют в промышленности. Но эффективность улавливания не всегда достаточна.

Центробежные методы очистки газов основаны на действии центробежной силы, возникающей при вращении очищаемого газового потока в очистном аппарате или при вращении частей самого аппарата. В качестве центробежных аппаратов пылеочистки применяют циклоны (рис.2) различных типов: батарейные циклоны, вращающиеся пылеуловители (ротоклоны) и др. Циклоны наиболее часто применяют в промышленности для осаждения твердых аэрозолей. Циклоны характеризуются высокой производительностью по газу, простотой устройства, надежностью в работе. Степень очистки от пыли зависит от размеров частиц. Для циклонов высокой производительности, в частности батарейных циклонов (производительностью более 20000 м 3 /ч), степень очистки составляет около 90% при диаметре частиц d > 30 мкм. Для частиц с d = 5-30 мкм степень очистки снижается до 80%, а при d == 2-5 мкм она составляет менее 40%.

Рис. 2 Рис. 3

На рис. 2 воздух вводится тангенциально во входной патрубок (4) циклона, представляющую собой закручивающий аппарат. Сформировавшийся здесь вращающийся поток опускается по кольцевому пространству, образованному цилиндрической частью циклона (3) и выхлопной трубой (5), в его конусную часть (2), а затем, продолжая вращаться, выходит из циклона через выхлопную трубу. (1) - пылевыпускное устройство.Аэродинамические силы искривляют траекторию частиц. При вращательно-нисходящем движении запыленного потока пылевые частицы достигают внутренней поверхности цилиндра, отделяются от потока. Под влиянием силы тяжести и увлекающего действия потока отделившиеся частицы опускаются и через пылевыпускное отверстие проходят в бункер.Более высокая степень очистки воздуха от пыли по сравнению с сухим циклоном может быть получена в пылеуловителях мокрого типа (рис.3), в которых пыль улавливается в результате контакта частиц со смачивающей жидкостью. Этот контакт может осуществляться на смоченных стенках, обтекаемых воздухом, на каплях или на свободной поверхности воды.

6.5. СРЕДСТВА ЗАЩИТЫ АТМОСФЕРЫ.

Воздух производственных помещений загрязняется выбросами технологического оборудования или при проведении технологических процессов без локализации отходящих веществ. Удаляемый из помещения вентиляционный воздух может стать причиной загрязнения атмосферного воздуха промышленных площадок и населенных мест. Кроме того, воздух

загрязняется технологическими выбросами цехов, таких как кузнечно-прессовые цеха, цеха термической и механической обработки металлов, литейные цеха и другие, на базе которых развивается современное машиностроение. В процессе производства машин и оборудования широко используют сварочные работы, механическую обработку металлов, переработку неметаллических материалов, лакокрасочные операции и т.д. Поэтому атмосфера нуждается в защите.

Средства защиты атмосферы должны ограничивать наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК. Это достигается локализацией вредных веществ в месте их образования, отводом из помещения или от оборудования и рассеиванием в атмосфере. Если при этом концентрации вредных веществ в атмосфере превышают ПДК, то применяют очистку выбросов от вредных веществ в аппаратах очистки, установленных в выпускной системе. Наиболее распространены вентиляционные, технологические и транспортные выпускные системы.

На практике реализуются следующие варианты защиты атмосферного воздуха:

вывод токсичных веществ из помещения общеобменной вентиляцией;


вентиляцией, очистка загрязненного воздуха в специальных аппаратах и
его возврат в производственное или бытовое помещение, если воздух
после очистки в аппарате соответствует нормативным требованиям к
приточному воздуху,

локализация токсичных веществ в зоне их образования местной
вентиляцией, очистка загрязненного воздуха в специальных аппаратах,
выброс и рассеивание в атмосфере,

очистка технологических газовых выбросов в специальных аппаратах,
выброс и рассеивание в атмосфере; в ряде случаев перед выбросом
отходящие газы разбавляют атмосферным воздухом.

Для соблюдения ПДК вредных веществ в атмосферном воздухе населенных мест устанавливают предельно-допустимый выброс (ПДВ) вредных веществ из систем вытяжной вентиляции, различных технологических и энергетических установок.

В соответствии с требованиями ГОСТ 17.2.02 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учетом перспективы их развития) не создают приземную концентрацию, превышающую ПДК.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на:

пылеуловители (сухие, электрические фильтры, мокрые фильтры);

туманоуловители (низкоскоростные и высокоскоростные);

аппараты для улавливания паров и газов (абсорбционные,
хемосорбционные, адсорбционные и нейтрализаторы);

аппараты многоступенчатой очистки (уловители пыли и газов,
уловители туманов и твердых примесей, многоступенчатые
пылеуловители).

Электрическая очистка (электрофильтры) - один из наиболее совершенных видов очистки газов от взвешенных в них частиц пыли и тумана. Этот процесс основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждении последних на осадительных коронирующих электродах. Для этого применяются электрофильтры.


Схема электрофильтра.

1-коронирующий электрод

2-осадительный электрод

Аэрозольные частицы, поступающие в зону между коронирующим 1 и осадительным 2 электродами, адсорбируют на своей поверхности ионы, приобретая электрический заряд, и получает тем самым ускорение, направленное в сторону электрода с зарядом противоположного знака. Учитывая, что в воздухе и дымовых газах подвижность отрицательных ионов выше, чем положительных, электрофильтры обычно делают с короной отрицательной полярности. Время зарядки аэрозольных частиц невелико и измеряется долями секунд. Движение заряженных частиц к осадительному электроду происходит под действием аэродинамических сил и силы взаимодействия электрического поля и заряда частицы.

Фильтр представляет собой корпус 1, разделенный пористой перегородкой (фильтроэлементом) 2 на две полосы. В фильтр поступают загрязненные газы, которые очищаются при прохождении фильтроэлемента. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности перегородки слой 3. Для вновь поступающих частиц этот слой становится частью фильтровой перегородки, что увеличивает эффективность очистки

фильтра и перепад давления на фильтроэлементе. Осождение частиц на поверхности пор фильтроэлемента происходит в результате совокупного действия эффекта касания, а также диффузионного, инерционного и гравитационного.

К мокрым пылеуловителям относят барботажно-пенные пылеуловители с провальной и переливной решетками.


Схема барботажно-пенные пылеуловители с провальной(а) и (б)

переливной решетками.

3-решетка

В таких аппаратах газ на очистку поступает под решетку 3, проходит через отверстия в решетке и, барботируя через слой жидкости и пены 2, очищается от пыли путем осаждения частиц на внутренней поверхности газовых пузырей. Режим работы аппаратов зависит от скорости подачи воздуха под решетку. При скорости до 1 м/с наблюдается барботажный режим работы аппарата. Дальнейший рост скорости газа в корпусе 1 аппарата до 2...2,5 м/с сопровождает возникновением пенного слоя над жидкостью, что приводит к повышению эффективности очистки газа и брызгоуноса из аппарата. Современные барботажно-пенные аппараты обеспечивают эффективность очистки газа от мелкодисперсной пыли -0,95...0,96 при удельном расходе воды 0,4...0,5 л/м. Практика эксплуатации этих аппаратов показывает, что они весьма чувствительны к неравномерности подачи газа под провальные решетки. Неравномерная подача газа приводит к местному сдуву пленки жидкости с решетки. Кроме того, решетки аппаратов склонны к засорению.

Для очистки воздуха от туманов кислот, щелочей, масел и других жидкостей используют волокнистые фильтры - туманоуловители. Принцип их действия основан на осаждении капель на поверхности пор с последующим стеканием жидкости по волокнам в нижнюю часть туманоуловителя. Осаждение капель жидкости происходит под действием броуновской диффузии или инерционного механизма отделения частиц загрязнителя от газовой фазы на фильтроэлементах в зависимости от скорости фильтрации W. Туманоуловители делят на низкоскоростные (W< 0,15 м/с), в которых преобладает механизм диффузного осаждения капель, и высокоскоростные (W=2...2,5 м/с), где осаждение происходит главным образом под воздействием инерционных сил.

В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.

В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брызгоунос обычно возникает при скоростях 1,7...2,5 м/с) значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.

Схема высокоскоростного туманоуловителя.

1 -брызгоуловитель

3-фильтрующий элемент

Высокоскоростной туманоуловитель с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок 2 толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 1, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэлемент нижней частью установлены в слой жидкости.


Схема фильтрующего элемента низкоскоростного туманоуловителя

3-цилиндры

4-волокнистый фильтроэлемент

5-нижний фланец

6-трубка гидрозатвора

В пространство между цилиндрами 3, изготовленными из сеток,
помещают волокнистый фильтроэлемент 4, который крепится с помощью
фланца 2 к корпусу туманоуловителя 1. Жидкость, осевшая на
фильтроэлементе; стекает на нижний фланец 5 и через трубку
гидрозатвора 6 и стакан 7 сливается из фильтра. Волокнистые
низкоскоростные туманоуловители обеспечивают высокую

эффективность очистки газа (до 0,999) от частиц размером менее 3 мкм и полностью улавливают частицы большого размера. Волокнистые слои формируются из стекловолокна диаметром 7...40 мкм. Толщина слоя составляет 5... 15 см, гидравлическое сопротивление сухих фильтроэлементов - 200... 1000 Па.

Высокоскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9... 0,98 при Ар=1500...2000 Па, от тумана с частицами менее 3 мкм.


СПИСОК ЛИТЕРАТУРЫ.

Аршинов В. А., Алексеев Г. А. Резание металлов и режущий
инструмент. Изд. 3-е, перераб. и доп. Учебник для машиностроительных техникумов. М.: Машиностроение, 1976.

Барановский Ю. В., Брахман Л. А., Бродский Ц. 3. и др. Ре­
жимы резания металлов. Справочник. Изд. 3-е, переработанное и дополненное. М.: Машиностроение, 1972.

Барсов А. И. Технология инструментального производства.
Учебник для машиностроительных техникумов. Изд. 4-е, исправленное и дополненное. М.: Машиностроение, 1975.

ГОСТ 2848-75. Конусы инструментов. Допуски. Методы и
средства контроля.

ГОСТ 5735-8IE. Развертки машинные, оснащенные пластинами твердого сплава. Технические условия.

Грановский Г. И., Грановский В. Г. Резание металлов: Учеб­
ник для машиностр. и приборостр. спец. вузов. М.: Высш. шк.,
1985.

Иноземцев Г. Г. Проектирование металлорежущих инструментов: Учеб. пособие для втузов по специальности
«Технология машиностроения, металлорежущие станки и инструменты». М.: Машиностроение, 1984.

Нефедов Н. А., Осипов К. А. Сборник задач и примеров по
резанию металлов и режущему инструменту: Учеб. пособие для
техникумов по предмету «Основы учения о резании металлов и
режущий инструмент». 5-е изд., перераб. и доп. М.: Машино­
строение, 1990.

Основы технологии машиностроения. Под ред. B.C. Корсакова. Изд. 3-е, доп. и перераб. Учебник для вузов. М.: Маши­ностроение, 1977.


Отраслевая методика по определению экономической эффективности использования новой техники, изобретений и рационализаторских предложений.

Сахаров Г. П., Арбузов О. Б., Боровой Ю. Л. и др. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие стан­ки и инструменты». М.: Машиностроение, 1989.


Изд. 3-е переработ. Т. 1. Под ред. А. Г. Косиловой и Р. К. Мещерякова. М.: Машиностроение, 1972.

Справочник технолога-машиностроителя. В двух томах.
Изд. 3-е переработ. Т. 2. Под ред. А. Н. Малова. М.: Машино­
строение, 1972.

Таратынов О. В., Земсков Г. Г., Баранчукова И. М. и др.
Металлорежущие системы машиностроительных производств:
Учеб. пособие для студентов технических вузов. М.: Высш.
шк., 1988.

Таратынов О. В., Земсков Г. Г., Тарамыкин Ю. П. и др.
Проектирование и расчет металлорежущего инструмента на
ЭВМ:. Учеб. пособие для втузов. М.: Высш. шк., 1991.

Турчин А. М., Новицкий П. В., Левшина Е. С. и др. Электрические измерения неэлектрических величин. Изд. 5-е, перераб. и доп. Л.: Энергия, 1975.

Худобин Л. В., Гречишников В. А. и др. Руководство к дипломному проектированию по технологи машиностроения, металлорежущим станкам и инструментам: Учеб. пособие для вузов по специальности «Технология машиностроения, метал­лорежущие станки и инструменты». М., Машиностроение, 1986.

Юдин Е. Я., Белов С. В., Баланцев С. К. и др. Охрана труда
в машиностроении: Учебник для машиностроительных вузов.
М.: Машиностроение, 1983.

Методические указания к практическому занятию «Расчет
механической вентиляции производственных помещений»./ Б.
С. Иванов, М.: Ротапринт МАСИ (ВТУЗ-ЗИЛ), 1993.

Методические указания по дипломному проектированию
«Нормативно-техническая документация по охране труда и окружающей среды». Часть 1./ Э. П. Пышкина, Л. И. Леонтьева, М.: Ротапринт МГИУ, 1997.

Методические указания по лабораторной работе «Изучение
устройства и порядка использования средств пожаротушеия»./
Б. С. Иванов, М.: Ротапринт Завода-втуза при ЗИЛе, 1978.

А Дубина. «Машиностроительные расчеты в среде Excel 97/2000.» - СПб.: БХВ – Санкт-Петербург, 2000.

ВВЕДЕНИЕ

Возрождение Российской промышленности первейшая задача укрепления экономики страны. Без сильной, конку­рентоспособной промышленности невозможно обеспечить нормальную жизнь страны и народа. Рыночные отношения, самостоятельность заводов, отход от планового хозяйства диктуют производителям выпускать продукцию пользую­щуюся мировым спросом и с минимальными затратами. На инженерно-технический персонал заводов возложены задачи по выпуску данной продукции с минимальными затратами в кратчайшие сроки, с гарантированным качеством.

Этого можно достичь применяя современные техноло­гии обработки деталей, оборудование, материалы, системы автоматизации производства и контроля качества продук­ции. От принятой технологии производства во многом за­висит надежность работы выпускаемых машин, а также экономика их эксплуатации.

Актуальна задача повышения технологического обес­печения качества производимых машин, и в первую очередь их точности. Точность в машиностроении имеет большое значение для повышения эксплуатационного качества ма­шин и для технологии их производства. Повышение точно­сти изготовления заготовок снижает трудоемкость механи­ческой обработки, а повышение точности механической об­работки сокращает трудоемкость сборки в результате устра­нения пригоночных работ и обеспечения взаимозаменяемо­сти деталей изделия.

По сравнению с другими методами получения дета­лей машин обработка резанием обеспечивает наибольшую их точность и наибольшую гибкость производственного про­цесса, создает возможности быстрейшего перехода от обра­ботки заготовок одного размера к обработке заготовок дру­гого размера.

Качество и стойкость инструмента во многом определя­ют производительность и эффективность процесса обработ­ки, а в некоторых случаях и вообще возможность получения деталей требуемых формы, качества и точности. Повышение качества и надежности режущего инструмента способствуют повышению производительности обработки металлов резани­ем.

Развертка - это режущий инструмент, позволяющий полу­чить высокую точность обрабатываемых деталей. Она являет­ся недорогим инструментом, а производительность труда при работе разверткой высока. Поэтому она широко использу­ется при окончательной обработке различных отверстий деталей машин. При современном развитии машинострои­тельной промышленности номенклатура производимых дета­лей огромна и разнообразие отверстий требующих обра­ботки развертками очень велико. Поэтому перед конструк­торами часто стоит задача разработать новую развертку. По­мочь в этом им может пакет прикладных программ на ЭВМ, рассчитывающий геометрию режущего инструмента и выводящий на плоттере рабочий чертеж развертки.

Последовательность проектирования и методы расче­та режущего инструмента основаны как на общих законо­мерностях процесса проектирования, так и на специфических особенностях, характерных для режущего инструмента. Каж­дый вид инструмента имеет конструктивные особенности, ко­торые необходимо учитывать при проектировании.

Специалисты, которым предстоит работать в металло­обрабатывающих отраслях промышленности, должны уметь грамотно проектировать различные конструкции режущих инструментов для современных металлообрабатывающих систем, эффективно используя вычислительную технику (ЭВМ) и достижения в области инструментального производ­ства.

Для сокращения сроков и повышения эффективности проектирования режущего инструмента используются автома­тизированные расчеты на ЭВМ, основой которых является программно-математическое обеспечение.

Создание пакетов прикладных программ для расчета геометрических параметров сложного и особо сложного ре­жущего инструмента на ЭВМ позволяет резко сократить за­траты конструкторского труда и повысить качество проекти­рования режущего инструмента.

Места, %; Тотд - время на отдых и личные потребности, %; К - коэффициент, учитывающий тип производства; Кз - коэффициент, учитывающий условия сборки. Для общей сборки гидрозамка норма времени: =1,308 мин. Расчет потребного количества сборочных стендов и коэффициентов его загрузки Найдем расчетное количество сборочных стендов, шт. =0,06 шт. Округляем в большую сторону СР=1. ...