Значительную часть фонда нефтедобывающих скважин в мире составляют скважины, эксплуатируемые установками ШГН. Это вызвано тем, что многие скважины сразу после окончания бурения вводятся в эксплуатацию насосным способом, а также переводом в эксплуатацию ШГН фонтанирующих и оборудованных бесштанговыми погружными электроцентробежными насосами скважин при уменьшении дебита до 100 т/сут. Таким образом, до 80% скважин в мире оборудованы именно установками ШГН.

Наземное и глубинное оборудование установки ШГН показано на рисунке 2.1. Установка состоит из приводного ЭД 1, соединенного ременной передачей 2 с редуктором 3. На выходном валу редуктора находится кривошип 4, а также противовес 5, на котором установлены грузы 6. Шатун 7 передает движение балансиру 8, к головке которого 9 прикреплена канатная подвеска 10. Полированный шток 11 проходит через сальниковый узел 12.

Подземное оборудование скважины состоит из обсадной колонны 13, насосно-компрессорных труб 14 и колонны насосных штанг 15.

Штанговый глубинный насос 19 состоит из цилиндра 16, приемного клапана 20 и нагнетательного клапана 17.

Штанговый глубинный насос (рисунок 2.2) состоит из цилиндра, приемного клапана и нагнетательного клапана.

Работает ШГН следующим образом. Цикл качания начинается в момент, когда шток (а соответственно и плунжер) движется вниз. Когда плунжер с открытым нагнетательным клапаном приближается к своему крайнему нижнему положению, всасывающий клапан закрыт. На полированный шток действует только нагрузка от веса штанг, погруженных в жидкость. В крайнем нижнем положении нагнетательный клапан закрывается.

Давление жидкости в цилиндре насоса практически равно давлению в насосных трубах над плунжером.

Рис.2.1.

Когда полированный шток начинает двигаться вверх, плунжер остается неподвижным по отношению к цилиндру насоса, так как упругие штанги не могут передать ему движение до тех пор, пока они не получат полного растяжения от веса столба жидкости в насосных трубах, приходящегося на площадь плунжера. Величина растяжения штанг прямо пропорциональна величине воспринятой части веса жидкости. Поэтому по мере увеличения растяжения штанг нагрузка на полированном штоке растет. Та часть жидкости, которую приняли на себя штанги, снимается с труб. Вследствие этого трубы сокращают свою

длину и их нижний конец, с закрытый всасывающим клапаном, движется вверх.

Так как между всасывающим и нагнетательным клапанами в цилиндре насоса находится практически несжимаемая жидкость, то движение нижнего конца труб вверх вызывает движение вверх и плунжера вместе с насосом.

Рис. 2.2.

  • 1 - насос; 2 - уровень жидкости; 3 - нефтеносный пласт;
  • 4 - колонна штанг; 5 - НКТ

В любой момент времени текущая величина растяжения штанг равна разности перемещений полированного штока и плунжера. Поэтому, чтобы штанги получили полное растяжение, необходимое для передачи движения плунжеру, полированный шток должен пройти путь, равный сумме растяжения штанг и сокращения труб.

Нагрузка на полированном штоке возрастает при одновременном перемещении его вверх. Во время последующего движения плунжера вверх на полированный шток действует неизменная нагрузка.

Из крайнего верхнего положения полированный шток начинает движение вниз. Однако плунжер не может двигаться вниз, так как под ним в цилиндре насоса находится практически несжимаемая жидкость. Нагнетательный клапан не может открыться, потому что давление в цилиндре насоса равно нулю, а над плунжером оно равно давлению всего столба жидкости в насосных трубах. Поэтому плунжер остается неподвижным по отношению к цилиндру насоса. Вследствие того, что плунжер стоит на месте, а полированный шток движется вниз, длина штанг сокращается, и нагрузка от веса жидкости постепенно передается на трубы. Давление в цилиндре насоса увеличивается пропорционально сокращению штанг.

Воспринимая нагрузку от веса жидкости, трубы соответственно удлиняются, и их нижний конец движется вниз. Так как плунжер опирается на несжимаемый столб жидкости в цилиндре насоса, то он движется вниз, оставаясь неподвижным по отношению к цилиндру насоса. Это вынужденное продвижение плунжера замедляет сокращение штанг и снятие нагрузки от веса жидкости. Поэтому штанги получают полное сокращение и полностью снимают с себя нагрузку от веса жидкости только тогда, когда полированный шток проходит расстояние, равное сумме сокращения штанг и растяжения труб от веса жидкости.

Вследствие уменьшения нагрузки при одновременном перемещении полированного штока вниз, происходит снятие со штанг нагрузки от веса жидкости.

Типы приводов штанговых глубинных насосов.

В настоящее время получили распространение два типа наземных приводов ШГН - станки-качалки и цепные приводы. Помимо этого существуют всевозможные экспериментальные приводы, среди которых можно выделить «линейный привод», «мобильные СК» (перевозимые на автомобиле) и «складные СК» (складывающиеся для прохождения через них систем полива сельскохозяйственных полей). В последнее время начинают использоваться гидравлические приводы ШГН. Поскольку управление каждым из этих приводов имеет свои особенности, необходимо рассмотреть их конструктивные особенности.

Конструкции некоторых типов СК изображены на рисунках 2.3, 2.4 и 2.5 (приводятся СК производства фирмы Lufkin, США). На рисунке 2.3 показана конструкция традиционного СК с двуплечим балансиром. На рисунке 2.4 приводится конструкция СК с одноплечим балансиром типа MARK И. Геометрия СК типа MARK II позволяет снизить момент на редукторе на 35% и уменьшить мощность приводного двигателя по сравнению с традиционным СК с двуплечим балансиром . И СК с пневматическим уравновешиванием показан на рисунке 2.5. При движении штока вниз газ в поршне сжимается, накапливая потенциальную энергию, и при движении штока вверх помогает электродвигателю поднять жидкость на поверхность.


Рис.2.3.

  • 1 - головка балансира; 2 - балансир; 3 - центральный подшипник; 4 - подшипник траверсы; 5 - лестница с ограждением; 6 - траверса; 7 - шатун; 8 - канатная подвеска;
  • 9 - траверсы канатной подвески; 10 - кривошип; 11 - подшипник пальца кривошипа;
  • 12-тормоз; 13 - противовес; 14 - ЭД; 15-стойка балансира; 16 - рычаг тормоза;
  • 17 - основание

Рис. 2.4.

  • 1 - головка балансира; 2 - траверса; 3 - балансир; 4 - центральный подшипник;
  • 5 - шатун; 6 - угловая опора; 7 - противовес; 8 - стойка балансира;
  • 9 - канатная подвеска; 10 - кривошип; 11 - траверсы канатной подвески; 12 - тормоз; 13 - редуктор; 14 - ЭД; 15 - подшипник пальца кривошипа; 16 - рычаг тормоза;
  • 17 - лестница платформы; 18 - основание

Рис.2.5.

  • 1 - головка балансира; 2 - подшипник воздушной емкости; 3 - подшипник траверсы;
  • 4 - траверса; 5 - балансир; 6 - центральный подшипник; 7 - воздушная емкость;
  • 8 - канатная подвеска; 9 - траверсы канатной подвески; 10 - лестница; 11 - шатун; 12 - угловая опора; 13 - шток поршня; 14 - стойка балансира;
  • 15 - подшипник пальца кривошипа; 16 - тормоз; 17 - кривошип; 18 - основание

Второй тип приводов - это цепные приводы. ЦП начали серийно выпускаться в начале 90-х годов XX века в Канаде и Китае, а в последующем - и в нашей стране .

Конструктивно ЦП состоит из вертикальной рамы, вдоль которой вращается цепь (рисунок 2.6). К одному из звеньев цепи прикреплен гибкий ремень, который совершает возвратно-поступательные движения. К другому концу ремня прикреплены траверсы канатной подвески полированного штока. Для цепных приводов характерны следующие особенности:

  • - движение полированного штока происходит с постоянной скоростью;
  • - большая длина хода (до 10 м);
  • - низкая скорость качаний (до 2 качаний в минуту).

На рисунке 2.7 показаны разработанные институтом ТатНИПИНефть цепные приводы типа ЦП80-6-1/4.

Рис. 2.6.

  • 1 - платформа с ограждением; 2 - шкив; 3 -траверса ремня; 4 - канатная подвеска;
  • 5 - замок штока; 6 - траверсы канатной подвески; 7 - ремень; 8 - полированный шток; 9 - звено соединения противовеса с ремнем; 10 - противовес; 11 - устье скважины; 12 - редуктор; 13 - кожух ременной передачи от ЭД; 14 - основание; 15 - полозья

Рис. 2.7.

На рисунке 2.8 показана динамика внедрения ЦП на месторождениях ОАО «Татнефть». Видно, что ЦП оснащены уже свыше тысячи скважин. В республике Башкортостан ЦП выпускаются на ООО «Нефтекамский завод нефтепромыслового оборудования».


Рис.2.8.

Так называемый «линейный» привод ШГН (Linear Rod Pump) разработан фирмой UNICO (США) в 2007 г. В «линейном» приводе на полированный шток одевается рейка с зубьями (рисунок 2.9), которая перемещается шестеренкой . Шестеренка соединяется с валом электродвигателя через редуктор. Главным достоинством линейного привода является низкая металлоемкость, и, соответственно, дешевизна. Линейный привод позволяет обеспечить только небольшую длину хода - не более 1,5 м, и нс может использоваться на глубоких скважинах, где необходима передача большой мощности ШГН.

Рис. 2.9.

  • 1 - штангодержатель; 2 - зубчатая рейка; 3 -корпус механизма; 4 - шестерня;
  • 5 - редуктор; 6 - масляная ванна; 7 - полированный шток; 8 - ЭД; 9 -основание

В последнее время наблюдается внедрение на нефтепромыслах еще одного типа приводов ШГН - гидравлического. Гидравлический привод ШГН типа

«Гейзер», разработанный ООО «НПП «ПСМ-Импэкс» (г. Екатеринбург) показан на рисунке 2.10. Гидравлическая установка «Гейзер» используется в качестве верхнего привода ШГН.

Гидравлический привод штангового насоса «Гейзер» состоит из следующих основных частей :

  • - мачта - опора с установленном на ней гидроцилиндром;
  • - укрытие, в котором установлены насосная станция и системы электронного управления;
  • - соединение насосной установки и гидроцилиндра выполнено при использовании рукавов высокого давления.

Рис.2.10.

1 - укрытие; 2 - съемный щит; 3 - рукава; 4 - плиты дорожные; 5 - щебень; 6 - короб кабельный на стойках; 7 - мачта-опора; 8 - устьевая арматура

Основные преимущества гидравлического привода заключаются в следующем:

  • - возможность плавной регулировки скорости спуска/подъема штанговой колонны;
  • - КПД гидравлического привода выше, чем у традиционных СК;
  • - возможность рекуперации энергии;
  • - простота и оперативность установки, наладки и демонтажа.

Основные технические данные гидравлического привода «Гейзер» приводятся в таблице 2.1.

Таблица 2.1

Основные технические данные гидравлического привода «Гейзер»

Система управления гидравлического привода «Гейзер» позволяет снимать динамограммы, при подключении эхолота и датчиков давления контролировать динамический и статический уровни, давление в выкидном коллекторе и затрубном пространстве.

Тема 7. Штанговые скважинные насосные установки (ШСНУ)

Схема штанговой скважинной насосной установки.

2. Станки-качалки.

Устьевое оборудование.

Штанги насосные (ШН).

Штанговые скважинные насосы ШСН.

Условные обозначения скважинных штанговых насосов.

7. Конструкция скважинных насосов.

8. Замковая опора.

Производительность насоса.

Правила безопасности при эксплуатации скважин штанговыми насосами.

Схема штанговой скважинной насосной установки

Прекращение или отсутствие фонтанирования обусловило использование других способов подъема нефти на поверхность, например, посредством штанговых скважинных насосов. Этими насосами в настоящее время оборудовано большинство скважин. Дебит скважин - от десятков килограмм в сутки до нескольких тонн. Насосы опускают на глубину от нескольких десятков метров до 3000 м иногда до 3200 - 3400 м.

ШСНУ включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Штанговая глубинная насосная установка (рисунок 7.1) состоит из скважинного насоса 2 вставного или невставного типов, насосных штанг 4 , насосно-компрессорных труб 3 , подвешенных на планшайбе или в трубной подвеске 8 устьевой арматуры, сальникового уплотнения 6 , сальникового штока 7 , станка качалки 9 , фундамента 10 и тройника 5 . На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1 .

Рис. 7.1. Схема штанговой насосной установки

1 – хвостовик; 2 – скважинный насос; 3 – насосно-компрессорные трубы; 4 – насосные штанги; 5 – устьевая арматура; 6 – устьевой сальник; 7 - полированный шток; 8 – канатная подвеска; 9 – стойка; 10 – фундамент.

2. Станки-качалки

Станок-качалка (рисунок 7.2), является индивидуальным приводом скважинного насоса.

Рисунок 7.2 - Станок-качалка типа СКД

1 - подвеска устьевого штока; 2 - балансир с опорой; 3 - стойка; 4 - шатун; 5 - кривошип; 6 - редуктор; 7 - ведомый шкив; 8 - ремень; 9 - электродвигатель; 10 - ведущий шкив; 11 - ограждение; 12 - поворотная плита; 13 - рама; 14 - противовес; 15 - траверса; 16 - тормоз; 17 - канатная подвеска.

Основные узлы станка-качалки - рама, стойка в виде усеченной четырехгранной пирамиды, балансир с поворотной головкой, траверса с шатунами, шарнирно-подвешенная к балансиру, редуктор с кривошипами и противовесами. СК комплектуется набором сменных шкивов для изменения числа качаний, т. е. регулирование дискретное.


Для быстрой смены и натяжения ремней электродвигатель устанавливается на поворотной салазке.

Монтируется станок-качалка на раме, устанавливаемой на железобетонное основание (фундамент). Фиксация балансира в необходимом (крайнем верхнем) положении головки осуществляется с помощью тормозного барабана (шкива). Головка балансира откидная или поворотная для беспрепятственного прохода спускоподъемного и глубинного оборудования при подземном ремонте скважины. Поскольку головка балансира совершает движение по дуге, то для сочленения ее с устьевым штоком и штангами имеется гибкая канатная подвеска 17 . Она позволяет регулировать посадку плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра, а также устанавливать динамограф для исследования работы оборудования.

Амплитуду движения головки балансира (длина хода устьевого штока - 7) регулируют путем изменения места сочленения кривошипа шатуном относительно оси вращения (перестановка пальца кривошипа в другое отверстие). За один двойной ход балансира нагрузка на СК неравномерная. Для уравновешивания работы станка-качалки помещают грузы (противовесы) на балансир, кривошип или на балансир и кривошип. Тогда уравновешивание называют соответственно балансирным, кривошипным (роторным) или комбинированным.

Блок управления обеспечивает управление электродвигателем СК в аварийных ситуациях (обрыв штанг, поломки редуктора, насоса, порыв трубопровода и т. д.), а также самозапуск СК после перерыва в подаче электроэнергии.

Долгое время нашей промышленностью выпускались станки-качалки типоразмеров СК. В настоящее время по ОСТ 26-16-08-87 выпускаются шесть типоразмеров станков-качалок типа СКД, основные характеристики приведены в таблице 4.

Добыча нефти при помощи штанговых насосов – самый распространенный способ искусственного подъема нефти, что объясняется их простотой, эффективностью и надежностью. Как минимум две трети фонда действующих добывающих скважин эксплуатируются установками ШГН.

Перед другими механизированными способами добычи нефти УШГН имеют следующие преимущества:

· обладают высоким коэффициентом полезного действия;

· проведение ремонта возможно непосредственно на промыслах;

· для первичных двигателей могут быть использованы различные приводы;

· установки ШГН могут применяться в осложненных условиях эксплуатации - в пескопроявляющих скважинах, при наличии в добываемой нефти парафина, при высоком газовом факторе, при откачке коррозионной жидкости.

Есть у штанговых насосов и недостатки. К основным недостаткам относятся:

· ограничение по глубине спуска насоса (чем глубже, тем выше вероятность обрыва штанг);

· малая подача насоса;

· ограничение по наклону ствола скважины и интенсивности его искривления (неприменимы в наклонных и горизонтальных скважинах, а также в сильно искривленных вертикальных)

Глубинный штанговый насос в простейшем виде (см. рисунок справа) состоит из плунжера, движущегося вверх-вниз по хорошо подогнанному цилиндру. Плунжер снабжен обратным клапаном, который позволяет жидкости течь вверх, но не вниз. Обратный клапан, называемый также выкидным, в современных насосах обычно представляет собой клапан типа шар-седло. Второй клапан, всасывающий, - это шаровой клапан, расположенный внизу цилиндра также позволяет жидкости течь вверх, но не вниз.

Штанговый насос относится к объемному типу насоса, работа которого обеспечивается возвратно-поступательным перемещением плунжера с помощью наземного привода через связующий орган (колонну штанг). Самая верхняя штанга называется полированным штоком , она проходит через сальник на устье скважины и соединяется с головкой балансира станка-качалки с помощью траверсы и гибкой канатной подвески.



Основные узлы привода УШГН (станка-качалки): рама, стойка в виде усеченной четырехгранной пирамиды, 6алансир с поворотной головой, траверса с шатунами, шарнирно подвешенные к балансиру, редуктор с кривошипами и противовесами, комплектуются набором сменных шкивов для изменения числа качаний. Для быстрой смены и натяжения ремней, электродвигатель устанавливают на поворотной салазке.

Автоматизированные групповые замерные установки (АГЗУ)

АГЗУ - Автоматизированная Групповая Замерная Установка - блок учета для автоматического определения дебитов нефтяных скважин.

Автоматизированные групповые замерные установки применяются в следующих областях: напорные системы сбора продукции нефтяных скважин и автоматизированные системы управления технологическими процессами нефтедобычи.

Установка состоит из двух блоков: технологического и аппаратурного. В технологическом блоке размещены:

· замерный сепаратор (ёмкость сепарационная);

· переключатель скважин многоходовый ПСМ;

· счетчик жидкости;

· регулятор расхода;

· привод гидравлический;

· запорная арматура;

· блок гидропривода;

В аппаратурном блоке размещены:

· блок управления;

· блок индикации;

· блок питания.

Принцип работы. Продукция скважин по трубопроводам, подключенным к установке, поступает в переключатель скважин многоходовой ПСМ. При помощи переключателя ПСМ продукция одной из скважин направляется в сепаратор, а продукция остальных скважин направляется в общий трубопровод. В сепараторе происходит отделение газа от жидкости. Выделившийся газ поступает в общий трубопровод (через датчик расхода газа), а жидкость накапливается в нижней емкости сепаратора. С помощью регулятора расхода и заслонки, соединенной с поплавковым уровнемером, обеспечивается циклическое прохождение накопившейся жидкости через счетчик с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне. Управление переключением скважин осуществляется блоком управления по установленной программе или оператором.

Экскурсии

27 июня 2015 года мы под руководством Зиганшина С.С. отправились в Альметьевск на учебную буровую . Там проводились соревнования между несколькими буровыми бригадами.



6 июля 2015 года мы пошли в лабораторию ООО "Башнефть-Петротест". Там занимаются анализированием нефти на состав, плотность и другие параметры. Об этом нам подробно рассказала Наталья Викторовна. Также нам рассказали об основных экологических проблемах в нефтегазовой отрасли и об их решениях.

7 июля 2015 года мы поехали на куст № 1262 НГДУ "Туймазынефть", который находится в 25-м микрорайоне (недалеко от сероводородной лечебницы). Там нас встретил оператор 5-го разряда Тронтов А.В. Он же вместе с нашим руководителем Зиганшиным С.С. рассказали об устройстве и принципе работы ШГН, об основных обязанностях оператора.


Тронтов А.В. и Зиганшин С.С. объясняют принцип работы ШГН



9 июля 2015 года мы были в Производственном управлении "Обустройство и обслуживание месторождений" Таргин Механосервис (Октябрьский цех), находящийся по адресу ул. Северная 2. Там нас встретил директор Халиков Азат Венерович. Данное предприятие занимается ремонтом нефтепромысловых устройств (бурильные насосы, такой как мультифазный насос, ШГН, ЭЦН и др.). Предприятие производит ремонт как с выездом на месторождение, так и у себя в цеху.

Экскурсию вел механик, недавно выпустившийся студент, Михаил.





Вел экскурсию буровой мастер Валиуллин Айдар Фаритович. Там нам рассказали о процессе бурения скважины, подачи воды в скважину для очистки ее от бурового шлама.




На этом и закончились наши экскурсии.

Заключение

Во время учебной практики мы побывали на экскурсиях под руководительством Зиганшина С.С. Он рассказывал нам очень много и подробно о работе бурильщиков, о принципах работы буровых насосов, штанговых глубинных насосов, автоматизированных групповых замерных установок, о правилах техники безопасности на буровой. За время практики мы узнали много нового не только о принципах работы тех или иных установок, но и о тяжелом труде нефтяника.

Список использованной литературы и материалов

1) Разработка месторождений природных газов: Учебное пособие для вузов. 2011;

2)Федеральные нормы и правила в области промышленной безопасности «правила безопасности. Правила безопасности в нефтяной и газовой промышленности. ПБ 08-624-03, Госгортехнадзор России, 2015;

3) Инструкция по бурению наклонно-направленных скважин с кустовых площадок на нефтяных месторождениях Западной Сибири. РД 39-0148070-6.027-86;
4) Конторович А.Э., Нестеров И.И., Салманов Ф.К., и др. Геология нефти и газа Западной Сибири. -М.: Недра. – 2010. – 680 с.;
5) Основы технологии бурения скважин, учебное пособие, Дмитриев А.Ю.;

6) Справочник бурильщика, Ю.В.Вадецкий, 2008, Москва, Издательский центр "Академия";

7) Интернет источник, http://gazovikoil.ru/index.php?id=253, дата обращения 4 августа 2015 год;

8) Интернет источник, http://vseonefti.ru/upstream/shtangovyi-nasos.html, дата обращения 4 августа 2015 год.

Вызов на практику (гарантийное письмо).

Директору филиала ФГБОУ ВПО

"УГНТУ" в г. Октябрьском

профессору В.Ш. Мухаметшину

Уважаемый Вячеслав Шарифуллович, нефтяная компания ОАО Сургутнефтегаз гарантирует прохождение производственной практики студента 2 курса Герасимова Льва Сергеевича по специальности "Эксплуатация и обслуживание объектов добычи нефти и газа" сроком с 29 июня по 1 августа. Предприятие гарантирует оплачиваемую практику, а также проживание в общежитии.

Генеральный директор предприятия: (ФИО)

(Подпись)

Резюме
Герасимов Лев Сергеевич

Место жительство (регистрация): РФ, Республика Башкортостан,

район Белебеевский, р.п.Приютово, ул. Свердлова, дом 13, кв. 32

1. Виды ШГН, описание, расшифровка типоразмеров, особенности исполнения, технические характеристики, определение производительности УШГН. Насосы глубинные штанговые (в дальнейшем – насосы) представляют собой вертикальную конструкцию одинарного действия с шариковыми клапанами, неподвижным цилиндром и металлическим плунжером. Предназначены для откачивания из нефтяных скважин жидкости, имеющей следующие показатели: температуру – не более 130 0 С, обводненность – не более 99% по объему, вязкость – не более 0,3 Па*с, минерализацию воды – до 10 г/л, содержание механических примесей – до 1,3 г/л, объемное содержание свободного газа на приеме насоса – не более 10%, сероводорода – не более 200мг/л и концентрацию ионов водорода – рН = 4 – 8. Существуют отдельные виды насосов, изготавливаемых на заказ, с параметрами эксплуатации выше типовых, например, насосы с хромированным внутренним покрытием цилиндра.

Согласно ТУ 26-16-06-86 изготавливают штанговые насосы следующих типов:

НВ1 – вставные с замком наверху,

НВ2 – вставные с замком внизу,

НН – невставные (трубные) со сбивным клапаном,

НН2 – невставные с ловителем.

НВ1Б-32-30-15-2 – это насос глубинный штанговый с характеристиками:

Вставной с замком наверху,

Цельный толстостенный цилиндр,

Условный диаметр плунжера – 32мм,

Ход плунжера – 3000м,

Группа посадки – 2.

2. Основные причины отказов УШГН.

Обрыв штанг

Утечки через неплотностивмуфтовыхсоединениях НКТ,которые все время подвергаются переменным нагрузкам
- уменьшение полезного хода плунжерапо сравнению сходом точки подвесаштангза счет упругих деформаций

насосных штангитруб

Утечки между цилиндром иплунжером,которые зависят от степени износа насоса иналичия абразивных

примесей воткачиваемойжидкости

Утечки вклапанах насоса из-за их немгновенногозакрытия иоткрытия и, главным образом, из-за их износа и

коррозии

-большое содержание песка воткачиваемойжидкости(песок, попадая вглубинный насос, приводит к износу

пары трения «цилиндр -плунжер»,клапанов, авряде случаев вызывает заклиниваниеплунжеравцилиндре и

обрыв штанг.Кроме того, чрезмерное количество песка впродукции приводит косаждению части его на забое скважин, образованию песчаных пробок иснижению продуктивности. Применяются различные фильтры,

привинчиваемые кприемному клапану насоса., песочные якоря. Впесочном якоре жидкость изменяет направление движения на 180", песок отделяется и скапливается в специальном кармане в нижней части якоря.

При заполнении кармана песком якорь извлекают на поверхность и очищают. Условием эффективной работы песочного якоря является существование вякоре скорости восходящего потока жидкости, меньшей скорости оседания частиц песка.

Отложения солей на вузлах насоса ивНКТ;

Асфальтено-смоло-парафиновыеотложения вНКТина насосных штангах;

Сильное искривление скважин

Коррозия нефтепромыслового оборудования.

Высоко вязкие и высоко парафинистые нефти

Штанговые скважинные насосные установки (ШСНУ) предназ­начены для подъема пластовой жидкости из скважины на дневную поверхность.

Свыше 70% действующего фонда скважин оснащены глубинны­ми скважинными насосами. С их помощью добывается в стране око­ло 30% нефти.

В настоящее время ШСНУ, как правило, применяют на скважи­нах с дебитом до 30...40 м 3 жидкости в сутки, реже до 50 м 3 при сред­них глубинах подвески 1000... 1500 м. В неглубоких скважинах уста­новка обеспечивает подъем жидкости до 200 м 3 /сут.

В отдельных случаях может применяться подвеска насоса на глу­бину до 3000 м.

Привод предназначен для преобразования энергии двигателя в возвратно-поступательное движение колонны насосных штанг.

Штанговая скважинная насосная установка включает:

а) наземное оборудование - станок-качалка (СК), оборудование устья, блок управления;

б) подземное оборудование - насосно-компрессорные трубы (НКТ), штанги насосные (ШН), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Рис. 1. Штанговая скважинная насосная установка:

1 - фундамент; 2 - рама; 3 - электродвигатель; 4 - цилиндр; 5 - кривошип; б - груз; 7 - шатун; 8 - груз; 9 - стойка; 10 - балансир; 11 - механизм фиксации головки балансира; 12 - головка балансира; 13 - канатная подвеска; 14 - полированная штанга;

15 - оборудование устья скважины; 16 - обсадная колонна; 17 - насосно- компрессорные трубы; 18 - колонна штанг; 19 - глубинный насос; 20 - газовый якорь; 21 - уплотнение полированной штанги; 22 - муфта трубная; 23 - муфта штанговая; 24 - цилиндр глубинного насоса; 25 - плунжер насоса; 26 - нагнетательный клапан; 27 - всасывающий клапан.

В скважину на колонне НКТ под уровень жидкости спускают цилиндр насоса. Затем на насосных штангах внутрь НКТ спускают поршень (плунжер), который устанавливают в цилиндр насоса. Плунжер имеет один или два клапана, открывающихся только вверх, называемых выкидными. Верхний конец штанг крепится к головке балансира станка-качалки. Для направления жидкости из НКТ в нефтепровод и предотвращения ее разлива на устье скважины устанавливают тройник и выше него сальник, через который пропускают сальниковый шток.

Верхняя штанга , называемая полированным штоком, пропускается через сальник и соединяется с головкой балансира станка-качалки с помощью канатной подвески и траверсы.

Плунжерный насос приводится в действие от станка-качалки, где вращательное движение, получаемое от двигателя при помощи редуктора, кривошипно-шатунного механизма и балансира, преобразуется в возвратно-поступательное движение, передаваемое плунжеру штангового насоса через колонну штанг.



При ходе плунжера вверх под ним снижается давление, и жидкость из межтрубного пространства через открытый всасывающий клапан поступает в цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, а нагнетательный клапан открывается, и жидкость из цилиндра переходит в подъёмные трубы. При непрерывной работе насоса уровень жидкости в НКТ повышается, жидкость доходит до устья скважины и через тройник переливается в выкидную линию.

Приводы ПО «Уралтрансмаш»

Условное обозначение приводов на примере ПШГНТ4-1,5-1400:

ПШГН – привод штанговых глубинных насосов;

Т – редуктор установлен на тумбе;

1,5 – наибольшая длина хода устьевого штока 1,5 м;

1400 – наибольший допустимый крутящий момент на ведомом валу редуктора;

Лекция № 2. Подземное оборудование ШНУ

Назначение, типы, конструкция и маркировка скважинных

Штанговых насосов.

Скважинные штанговые насосы предназначены для откачивания из нефтяных скважин жидкости обводненностью до 99%, температу­рой до 130°С, содержанием сероводорода не более 50мг/л, минера­лизацией воды не более 10г/л.

Скважинные насосы имеют вертикальную конструкцию одинар­ного действия с неподвижным цилиндром, подвижным металличес­ким плунжером и шариковыми клапанами. Насосы изготавливают следующих типов:

1) НВ1 - вставные с замком наверху;

2) НВ2 - вставные с замком внизу;

3) НН - невставные без ловителя;

4) НН1 - невставные с захватным штоком;

5) НН2 - невставные с ловителем

Рис. 2. Насосы скважинные невставные
Цилиндр невставного (трубно­го) скважинного насоса (см. рис.2) присоединяется к колонне НКТ и вместе с ней спускается в скважину. Плунжер НСН вводится через НКТ в цилиндр вместе с под­вешенным к нему всасывающим кла­паном на насосных штангах. Чтобы не повредить плунжер при спуске, его диаметр принимают меньшим внутреннего диаметра НКТ пример­но на 6 мм. Применение НСН целе­сообразно в скважинах с большим де­битом, небольшой глубиной спуска и большим межремонтным перио­дом. Для смены насоса (цилиндра) не­обходимо извлекать штанги и трубы.

Насос НН1 состоит из цилиндра, плунжера, нагнетательного и всасы­вающего клапанов. В верхней части плунжера размещается нагнетатель­ный клапан и шток с переводником под штанги.

К нижнему концу плунжера с по­мощью наконечника на захватном штоке свободно подвешивается вса­сывающий клапан. При работе клапан сажается в седло корпуса. Подвешивать всасывающий клапан к плун­жеру необходимо для слива жидкости из НКТ перед их подъемом, а также для замены клапана без подъема НКТ. Наличие захватного штока внутри плунжера ограничивает длину его хода, которая в на­сосах НН1 не превышает 0,9 м.

В насосе НН2С в отличие от насоса НН1 нагнетательный клапан установлен на нижнем конце плунжера. Для извлечения всасываю­щего клапана без подъема НКТ используется ловитель (байонетный замок), который крепится к седлу нагнетательного клапана. Ловитель имеет две фигурные канавки для зацепления. В клетку всасывающе­го клапана ввинчен шпиндель (укороченный шток) с двумя утолщен­ными шпильками. После посадки всасывающего клапана в седло кор­пуса поворотом колонны штанг на 1-2 оборота против часовой стрел­ки добиваются того, что шпильки шпинделя скользят по канавкам ловителя и всасывающий клапан отсоединяется от плунжера. Захват осуществляется после посадки плунжера на шпиндель при повороте колонны штанг по часовой стрелке.

Насос ННБА позволяет осуществлять форсированный отбор жид­кости из скважин через НКТ, диаметр которых меньше диаметра плун­жера.

Это достигнуто особой конструкцией его - наличием автосцепа, включающего сцеп и захват, и сливного устройства. Насос в собран­ном виде без сцепа спускается в скважину на НКТ. Затем на штангах спускается сцеп с мерным штоком. Сцеп проталкивает золотник слив­ного устройства вниз и сцепляется с захватом, закрепленным на плун­жере, при этом сливное отверстие закрывается. При подъеме насоса следует поднять колонну штанг. При этом захват проталкивает зо­лотник вверх, открывая сливное отверстие. После этого сцеп отделя­ется от захвата и колонна штанг свободно поднимается.

Цилиндр вставного насоса (см. рис. 3) спускается внутри труб на колонне штанг и монтируется на них с помощью специального зам­кового соединения. Это позволяет менять вставной насос без спуска и подъема труб. Но при одинаковых диаметрах плунжеров вставной насос требует применения НКТ большего диаметра.

Скважинные насосы исполнения НВ1С предназначены для отка­чивания из нефтяных скважин маловязкой жидкости.

Насос состоит из составного цилиндра на нижний конец которо­го навернут сдвоенный всасывающий клапан, а на верхний конец - замок плунжера, подвижно расположенного внутри цилиндра, на резь­бовые концы которого навинчены: снизу сдвоенный нагнетательный клапан, а сверху - клетка плунжера. Для присоединения плунжера к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и закрепленным контргайкой. В расточке верхнего переводника цилиндра располо­жен упор, упираясь на который, плунжер обеспечивает срыв скважинного насоса с опоры.

Скважинные насосы испол­нения НВ1Б. Это насосы, по на­значению, конструктивному ис­полнению, принципу работы аналогичны насосам исполнения НВ1С и отличаются от них толь­ко тем, что в качестве цилиндра использованы цельные цилинд­ры исполнения ЦБ, характеризу­ющиеся повышенной прочнос­тью, износостойкостью и транс­портабельностью по сравнению с цилиндрами исполнения ЦС.

Скважинные насосы испол­нения НВ2 имеют область при­менения аналогичную области применения скважинных насо­сов исполнения НВ1, однако мо­гут быть спущены в скважины на большую глубину.

Рис. 3. Насосы скважинные вставные
Конструктивно скважинные насосы состоят из цилиндра с всасывающим клапаном, на­винченным на нижний конец.

На всасывающий клапан навинчен упорный ниппель с конусом. На верхнем конце цилиндра располо­жен защитный клапан, предотвращающий осаждение песка в цилин­дре при остановке насоса.

Внутри цилиндра подвижно установлен плунжер с нагнетатель­ным клапаном на нижнем конце и клеткой плунжера на верхнем кон­це. Для присоединения плунжера насоса к колонне насосных штанг насос снабжен штоком, навинченным на клетку плунжера и законт­ренным контргайкой.

В расточке верхнего конца цилиндра расположен упор.

Насос спускается в колонну насосно-компрессорных труб на ко­лонне насосных штанг и закрепляется в опоре нижней частью при помощи ниппеля упорного с конусом. Такое закрепление насоса позволяет разгрузить от пульсирующих нагрузок.

Это обстоятельство обеспечивает применение его на больших глубинах скважин.

Цилиндры скважинных насосов выпускают в двух исполнениях:

® ЦБ - цельный (безвтулочный), толстостенный;

® ЦС - составной (втулочный).

Цилиндр втулочного насоса состоит из кожуха, в котором разме­щены втулки. Фиксация втулок в кожухе обеспечивается гайками.

Втулки подвергаются воздействию переменного внутреннего гид­равлического давления, обусловленного столбом откачиваемой жид­кости, и постоянного усилия, возникающего в результате торцевого обжатия рабочих втулок. Втулки всех насосов при различных внут­ренних диаметрах имеют одинаковую длину - по 300 мм.

Втулки всех насосов изготавливают трех типов: легированные из стали марки 38ХМЮА, стальные из стали марок 45 и 40Х, чугунные марки СЧ26-48.

Легированные втулки изготавливают только тонкостенными, стальные - тонкостенные, с увеличенной толщиной стенки и толсто­стенные, чугунные - толстостенные.

Для увеличения долговечности внутреннюю поверхность втулок упрочняют физико-термическими методами: чугунные - закалива­ют токами высокой частоты, стальные азотируют, цементируют, нит­рируют. В результате этой обработки твердость поверхностного слоя составляет до 80 HRc.

Механическая обработка втулок заключается в шлифовании и хонинговании. Основные требования к механической обработке - высокий класс точности и чистоты внутренней поверхности, а также перпендикулярность торцов к оси втулок.

Макрогеометрические отклонения внутреннего диаметра втулки должны быть не более 0,03 мм. Плоскостность торцевых поверхнос­тей должна обеспечивать равномерное непрерывное пятно по краске не менее 2/3 толщины стенок втулки.

Цельнотянутые цилиндры представляют собой длинную сталь­ную трубу, внутренняя поверхность которой рабочая. Труба при этом играет роль и цилиндра и кожуха одновременно. Подобная конструк­ция лишена таких недостатков, как негерметичность между торцами рабочих втулок, искривление оси цилиндра. При этом увеличивает­ся жесткость насоса и создается возможность использовать плунжер большого диаметра при одинаковом по сравнению с втулочным на­сосом наружном диаметре.

Плунжер глубинного насоса представляет собой стальную трубу с внутренней резьбой на концах. Для всех насосов длина плунжера постоянна и составляет 1200 мм. Их изготавливают из стали 45, 40Х или 38ХМЮА. По способу уплотнения зазора цилиндр – плунжер различают полностью металлические и гуммированные плунжеры. В паре металлический плунжер - цилиндр уплотнение создается нор­мированным зазором большой длины, в гуммированных - за счет манжет или колец, изготовленных из эластомера или пластмассы.

В настоящее время применяют плунжеры (рис. 4):

а) с гладкой поверхностью;

б) с кольцевыми канавками;

в) с винтовой канавкой;

г) с кольцевыми канавками, цилиндрической расточкой и скошен­ным концом в верхней части («пескобрей»);

д) манжетные плунжеры;

е) гуммированные плунжеры.

а - гладкий (исполнение Г); б - с кольцевыми канавками (исполнение К); в - с винтовой канавкой (исполнение В); г - типа «пескобрей» (исполнение П); д - манжетный, гуммированный плунжер; 1 - корпус плунжера; 2 - самоуплотняющееся резиновое кольцо; 3 - набухающие резиновые кольца.

Насосные штанги

Штанги насосные предназначены для передачи возвратно-поступательного движения плунжеру насоса (рис. 5). Изготавливаются в основном из легированных сталей круглого сечения диаметром 16, 19, 22, 25 мм, длиной 8000 мм и укороченные – 1000, 1200, 1500, 2000 и 3000 мм как для нормальных, так и для коррозионных условий эксплуатации.

Рис. 5 – Насосная штанга

Шифр штанг – ШН-22 обозначает: штанга насосная диаметром 22 мм. Марка сталей – сталь 40, 20Н2М, 30ХМА, 15НЗМА и 15Х2НМФ с пределом текучести от 320 до 630 МПа. Насосные штанги применяются в виде колонн, составленных из отдельных штанг, соединенных посредством муфт.

Муфты штанговые выпускаются: соединительные типа МШ (рис. 6) – для соединения штанг одинакового размера и переводные типа МШП – для соединения штанг разного диаметра.

Для соединения штанг применяются муфты – МШ16, МШ19, МШ22, МШ25; цифра означает диаметр соединяемой штанги по телу (мм). АО «Очерский машиностроительный завод» изготавливает штанги насосные из одноосно-ориентированного стеклопластика с пределом прочности не менее 800 МПа. Концы (ниппели) штанг изготавливаются из сталей. Диаметры штанг 19, 22, 25 мм, длина 8000 – 11000 мм.

Рис. 6 – Соединительная муфта насосной штанги:

а – исполнение I; б – исполнение II

Преимущества: снижение веса штанг в 3 раза, снижение энергопотребления на 18 – 20 %, повышение коррозионной стойкости при повышенном содержании сероводорода и др. Применяются непрерывные штанги «Кород».