Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

Химические свойства солей

Соли следует рассматривать в виде продукта взаимодействия кислоты и основания. В итоге могут образовываться:

  1. нормальные (средние) - образуются при достаточном для полного взаимодействия количестве кислоты и основания. Названия нормальных соле й состоят из двух частей. В начале называется анион (кислотный остаток), затем катион.
  2. кислые - образуются при избытке кислоты и недостаточном количестве щелочи, потому как при этом катионов металла становится недостаточно для замещения всех катионов водорода, имеющихся в молекуле кислоты. В составе кислотных остатков данного вида солей вы всегда увидите водород. Кислые соли образуются только многоосновными кислотами и проявляют свойства как солей, так и кислот. В названиях кислых солей ставится приставка гидро- к аниону.
  3. основные соли - образуются при избытке основания и недостаточном количестве кислоты, потому как в данном случае анионов кислотных остатков недостаточно для полного замещения гидроксогрупп, имеющихся в основании. основные соли в составе катионов содержат гидроксогруппы. Основные соли возможны для многокислотных оснований, а для однокислотных нет. Некоторые основные соли способны самостоятельно разлагаться, при этом выделяя воду, образуя оксосоли, обладающие свойствами основных солей. Название основных солей строится следующим образом: к аниону добавляется приставка гидроксо- .

Типичные реакции нормальных солей

  • С металлами реагируют хорошо. При этом, более активные металлы вытесняют менее активные из растворов их солей.
  • С кислотами, щелочами и другими солями реакции проходят до конца, при условии образования осадка, газа или малодиссоциируемых соединений.
  • В реакциях солей со щелочами образуются такие вещества, как гидроксид никеля (II) Ni(OH) 2 – осадок; аммиак NH 3 – газ; вода H 2 О – слабый электролит, малодиссоциируемое соединение:
  • Соли реагируют между собой, если образуется осадок или в случае образования более устойчивого соединения.
  • Многие нормальные соли разлагаются при нагревании с образованием двух оксидов – кислотного и основного
  • Нитраты разлагаются другим, отличным от остальных нормальных солей образом. При нагревании нитраты щелочных и щелочноземельных металлов выделяют кислород и превращаются в нитриты:
  • Нитраты почти всех других металлов разлагаются до оксидов:
  • Нитраты некоторых тяжелых металлов (серебра, ртути и др) разлагаются при нагревании до металлов:

Типичные реакции кислых солей

  • Они вступают во все те реакции, в которые вступают кислоты. Со щелочами реагируют, если в составе кислой соли и щелочи имеется один и тот же металл, то в результате образуется нормальная соль.
  • Если же щелочь содержит другой металл, то образуются двойные соли.

Типичные реакции основных солей

  • Данные соли вступают в те же реакции, что и основания. С кислотами реагируют, если в составе основной соли и кислоты имеется один и тот же кислотный остаток, то в результате образуется нормальная соль.
  • Если же кислота содержит другой кислотный остаток, то образуются двойные соли.

Комплексные соли - соединение, в узлах кристаллической решетки которого содержатся комплексные ионы.

Современная химическая наука представляет собой множество разнообразных отраслей, и каждая из них, помимо теоретической базы, имеет большое прикладное значение, практическое. Чего ни коснись, все кругом - продукты химического производства. Главные разделы - это неорганическая и органическая химия. Рассмотрим, какие основные классы веществ относят к неорганическим и какими свойствами они обладают.

Главные категории неорганических соединений

К таковым принято относить следующие:

  1. Оксиды.
  2. Соли.
  3. Основания.
  4. Кислоты.

Каждый из классов представлен большим разнообразием соединений неорганической природы и имеет значение практически в любой структуре хозяйственной и промышленной деятельности человека. Все главные свойства, характерные для этих соединений, нахождение в природе и получение изучаются в школьном курсе химии в обязательном порядке, в 8-11 классах.

Существует общая таблица оксидов, солей, оснований, кислот, в которой представлены примеры каждого из веществ и их агрегатное состояние, нахождение в природе. А также показаны взаимодействия, описывающие химические свойства. Однако мы рассмотрим каждый из классов отдельно и более подробно.

Группа соединений - оксиды

4. Реакции, в результате которых элементы меняют СО

Me +n O + C = Me 0 + CO

1. Реагент вода: образование кислот (SiO 2 исключение)

КО + вода = кислота

2. Реакции с основаниями:

CO 2 + 2CsOH = Cs 2 CO 3 + H 2 O

3. Реакции с основными оксидами: образование соли

P 2 O 5 + 3MnO = Mn 3 (PO 3) 2

4. Реакции ОВР:

CO 2 + 2Ca = C + 2CaO,

Проявляют двойные свойства, взаимодействуют по принципу кислотно-основного метода (с кислотами, щелочами, основными оксидами, кислотными оксидами). С водой во взаимодействие не вступают.

1. С кислотами: образование солей и воды

АО + кислота = соль + Н 2 О

2. С основаниями (щелочами): образование гидроксокомплексов

Al 2 O 3 + LiOH + вода = Li

3. Реакции с кислотными оксидами: получение солей

FeO + SO 2 = FeSO 3

4. Реакции с ОО: образование солей, сплавление

MnO + Rb 2 O = двойная соль Rb 2 MnO 2

5. Реакции сплавления с щелочами и карбонатами щелочных металлов: образование солей

Al 2 O 3 + 2LiOH = 2LiAlO 2 + H 2 O

Не образуют ни кислот, ни щелочей. Проявляют узко специфические свойства.

Каждый высший оксид, образованный как металлом, так и неметаллом, растворяясь в воде, дает сильную кислоту или щелочь.

Кислоты органические и неорганические

В классическом звучании (основываясь на позициях ЭД - электролитической диссоциации - Сванте Аррениуса) кислоты - это соединения, в водной среде диссоциирующие на катионы Н + и анионы остатков кислоты An - . Однако сегодня тщательно изучены кислоты и в безводных условиях, поэтому существует много разных теорий для гидроксидов.

Эмпирические формулы оксидов, оснований, кислот, солей складываются только из символов, элементов и индексов, указывающих их количество в веществе. Например, неорганические кислоты выражаются формулой H + кислотный остаток n- . Органические вещества имеют другое теоретическое отображение. Помимо эмпирической, для них можно записать полную и сокращенную структурную формулу, которая будет отражать не только состав и количество молекулы, но и порядок расположения атомов, их связь между собой и главную функциональную группу для карбоновых кислот -СООН.

В неорганике все кислоты делятся на две группы:

  • бескислородные - HBr, HCN, HCL и другие;
  • кислородсодержащие (оксокислоты) - HClO 3 и все, где есть кислород.

Также неорганические кислоты классифицируются по стабильности (стабильные или устойчивые - все, кроме угольной и сернистой, нестабильные или неустойчивые - угольная и сернистая). По силе кислоты могут быть сильными: серная, соляная, азотная, хлорная и другие, а также слабыми: сероводородная, хлорноватистая и другие.

Совсем не такое разнообразие предлагает органическая химия. Кислоты, которые имеют органическую природу, относятся к карбоновым кислотам. Их общая особенность - наличие функциональной группы -СООН. Например, НСООН (муравьиная), СН 3 СООН (уксусная), С 17 Н 35 СООН (стеариновая) и другие.

Существует ряд кислот, на которые особенно тщательно делается упор при рассмотрении данной темы в школьном курсе химии.

  1. Соляная.
  2. Азотная.
  3. Ортофосфорная.
  4. Бромоводородная.
  5. Угольная.
  6. Иодоводородная.
  7. Серная.
  8. Уксусная, или этановая.
  9. Бутановая, или масляная.
  10. Бензойная.

Данные 10 кислот по химии являются основополагающими веществами соответствующего класса как в школьном курсе, так и в целом в промышленности и синтезах.

Свойства неорганических кислот

К основным физическим свойствам нужно отнести в первую очередь различное агрегатное состояние. Ведь существует ряд кислот, имеющих вид кристаллов или порошков (борная, ортофосфорная) при обычных условиях. Подавляющее большинство же известных неорганических кислот представляет собой разные жидкости. Температуры кипения и плавления также варьируются.

Кислоты способны вызывать тяжелые ожоги, так как обладают силой, разрушающей органические ткани и кожный покров. Для обнаружения кислот используют индикаторы:

  • метилоранж (в обычной среде - оранжевый, в кислотах - красный),
  • лакмус (в нейтральной - фиолетовый, в кислотах - красный) или некоторые другие.

К важнейшим химическим свойствам можно отнести способность вступать во взаимодействие как с простыми, так и со сложными веществами.

Химические свойства неорганических кислот
С чем взаимодействуют Пример реакции

1. С простыми веществами-металлами. Обязательное условие: металл должен стоять в ЭХРНМ до водорода, так как металлы, стоящие после водорода, не способны вытеснить его из состава кислот. В результате реакции всегда образуется водород в виде газа и соль.

2. С основаниями. Итогом реакции являются соль и вода. Подобные реакции сильных кислот с щелочами носят название реакций нейтрализации.

Любая кислота (сильная) + растворимое основание = соль и вода

3. С амфотерными гидроксидами. Итог: соль и вода.

2HNO 2 + гидроксид бериллия = Be(NO 2) 2 (соль средняя) + 2H 2 O

4. С основными оксидами. Итог: вода, соль.

2HCL + FeO = хлорид железа (II) + H 2 O

5. С амфотерными оксидами. Итоговый эффект: соль и вода.

2HI + ZnO = ZnI 2 + H 2 O

6. С солями, образованными более слабыми кислотами. Итоговый эффект: соль и слабая кислота.

2HBr + MgCO 3 = бромид магния + H 2 O + CO 2

При взаимодействии с металлами одинаково реагируют не все кислоты. Химия (9 класс) в школе предполагает весьма неглубокое изучение таких реакций, однако и на таком уровне рассматриваются специфические свойства концентрированной азотной и серной кислоты при взаимодействии с металлами.

Гидроксиды: щелочи, амфотерные и нерастворимые основания

Оксиды, соли, основания, кислоты - все эти классы веществ имеют общую химическую природу, объясняющуюся строением кристаллической решетки, а также взаимным влиянием атомов в составе молекул. Однако если для оксидов можно было дать вполне конкретное определение, то для кислот и оснований это сделать сложнее.

Так же, как и кислоты, основаниями по теории ЭД называются вещества, способные в водном растворе распадаться на катионы металлов Ме n+ и анионы гидроксогрупп ОН - .

  • Растворимые или щелочи (сильные основания, изменяющие цвет индикаторов). Образованы металлами I, II групп. Пример: КОН, NaOH, LiOH (то есть учитываются элементы только главных подгрупп);
  • Малорастворимые или нерастворимые (средней силы, не изменяющие окраску индикаторов). Пример: гидроксид магния, железа (II), (III) и другие.
  • Молекулярные (слабые основания, в водной среде обратимо диссоциируют на ионы-молекулы). Пример: N 2 H 4, амины, аммиак.
  • Амфотерные гидроксиды (проявляют двойственные основно-кислотные свойства). Пример: берилия, цинка и так далее.

Каждая представленная группа изучается в школьном курсе химии в разделе "Основания". Химия 8-9 класса подразумевает подробное изучение щелочей и малорастворимых соединений.

Главные характерные свойства оснований

Все щелочи и малорастворимые соединения находятся в природе в твердом кристаллическом состоянии. При этом температуры плавления их, как правило, невысоки, и малорастворимые гидроксиды разлагаются при нагревании. Цвет оснований разный. Если щелочи белого цвета, то кристаллы малорастворимых и молекулярных оснований могут быть самой различной окраски. Растворимость большинства соединений данного класса можно посмотреть в таблице, в которой представлены формулы оксидов, оснований, кислот, солей, показана их растворимость.

Щелочи способны изменять окраску индикаторов следующим образом: фенолфталеин - малиновый, метилоранж - желтый. Это обеспечивается свободным присутствием гидроксогрупп в растворе. Именно поэтому малорастворимые основания такой реакции не дают.

Химические свойства каждой группы оснований различны.

Химические свойства
Щелочей Малорастворимых оснований Амфотерных гидроксидов

I. Взаимодействуют с КО (итог -соль и вода):

2LiOH + SO 3 = Li 2 SO 4 + вода

II. Взаимодействуют с кислотами (соль и вода):

обычные реакции нейтрализации (смотрите кислоты)

III. Взаимодействуют с АО с образованием гидроксокомплекса соли и воды:

2NaOH + Me +n O = Na 2 Me +n O 2 + H 2 O, или Na 2

IV. Взаимодействуют с амфотерными гидроксидами с образованием гидроксокомплексных солей:

То же самое, что и с АО, только без воды

V. Взаимодействуют с растворимыми солями с образованием нерастворимых гидроксидов и солей:

3CsOH + хлорид железа (III) = Fe(OH) 3 + 3CsCl

VI. Взаимодействуют с цинком и алюминием в водном растворе с образованием солей и водорода:

2RbOH + 2Al + вода = комплекс с гидроксид ионом 2Rb + 3H 2

I. При нагревании способны разлагаться:

нерастворимый гидроксид = оксид + вода

II. Реакции с кислотами (итог: соль и вода):

Fe(OH) 2 + 2HBr = FeBr 2 + вода

III. Взаимодействуют с КО:

Me +n (OH) n + КО = соль + H 2 O

I. Реагируют с кислотами с образованием соли и воды:

(II) + 2HBr = CuBr 2 + вода

II. Реагируют с щелочами: итог - соль и вода (условие: сплавление)

Zn(OH) 2 + 2CsOH = соль + 2H 2 O

III. Реагируют с сильными гидроксидами: итог - соли, если реакция идет в водном растворе:

Cr(OH) 3 + 3RbOH = Rb 3

Это большинство химических свойств, которые проявляют основания. Химия оснований достаточно проста и подчиняется общим закономерностям всех неорганических соединений.

Класс неорганических солей. Классификация, физические свойства

Опираясь на положения ЭД, солями можно назвать неорганические соединения, в водном растворе диссоциирующие на катионы металлов Ме +n и анионы кислотных остатков An n- . Так можно представить соли. Определение химия дает не одно, однако это наиболее точное.

При этом по своей химической природе все соли подразделяются на:

  • Кислые (имеющие в составе катион водорода). Пример: NaHSO 4.
  • Основные (имеющие в составе гидроксогруппу). Пример: MgOHNO 3 , FeOHCL 2.
  • Средние (состоят только из катиона металла и кислотного остатка). Пример: NaCL, CaSO 4.
  • Двойные (включают в себя два разных катиона металла). Пример: NaAl(SO 4) 3.
  • Комплексные (гидроксокомплексы, аквакомплексы и другие). Пример: К 2 .

Формулы солей отражают их химическую природу, а также говорят о качественном и количественном составе молекулы.

Оксиды, соли, основания, кислоты обладают различной способностью к растворимости, которую можно посмотреть в соответствующей таблице.

Если же говорить об агрегатном состоянии солей, то нужно заметить их однообразие. Они существуют только в твердом, кристаллическом или порошкообразном состоянии. Цветовая гамма достаточно разнообразна. Растворы комплексных солей, как правило, имеют яркие насыщенные краски.

Химические взаимодействия для класса средних солей

Имеют схожие химические свойства основания, кислоты, соли. Оксиды, как мы уже рассмотрели, несколько отличаются от них по этому фактору.

Всего можно выделить 4 основных типа взаимодействий для средних солей.

I. Взаимодействие с кислотами (только сильными с точки зрения ЭД) с образованием другой соли и слабой кислоты:

KCNS + HCL = KCL + HCNS

II. Реакции с растворимыми гидроксидами с появлением солей и нерастворимых оснований:

CuSO 4 + 2LiOH = 2LiSO 4 соль растворимая + Cu(OH) 2 нерастворимое основание

III. Взаимодействие с другой растворимой солью с образованием нерастворимой соли и растворимой:

PbCL 2 + Na 2 S = PbS + 2NaCL

IV. Реакции с металлами, стоящими в ЭХРНМ левее того, что образует соль. При этом вступающий в реакцию металл не должен при обычных условиях вступать во взаимодействие с водой:

Mg + 2AgCL = MgCL 2 + 2Ag

Это главные типы взаимодействий, которые характерны для средних солей. Формулы солей комплексных, основных, двойных и кислых сами за себя говорят о специфичности проявляемых химических свойств.

Формулы оксидов, оснований, кислот, солей отражают химическую сущность всех представителей данных классов неорганических соединений, а кроме того, дают представление о названии вещества и его физических свойствах. Поэтому на их написание следует обращать особое внимание. Огромное разнообразие соединений предлагает нам в целом удивительная наука - химия. Оксиды, основания, кислоты, соли - это лишь часть необъятного многообразия.

Для того чтобы ответить на вопрос, что такое соль, обычно долго задумываться не приходится. Это химическое соединение в повседневной жизни встречается достаточно часто. Об обычной поваренной соли и говорить не приходится. Подробное внутреннее строение солей и их соединений изучает неорганическая химия.

Определение соли

Четкий ответ на вопрос, что такое соль, можно найти в трудах М. В. Ломоносова. Такое имя он присвоил хрупким телам, которые могут растворяться в воде и не воспламеняются под воздействием высоких температур или открытого огня. Позднее определение выводили не из их физических, а из химических свойств данных веществ.

Школьные учебники неорганической химии дают достаточно ясное понятие того, что такое соль. Так называются продукты замещения химической реакции, при которой атомы водорода кислоты в соединении замещаются на металл. Примеры типичных соединений солей: NaCL, MgSO 4 . Легко увидеть, что любую эту запись можно разделить на две половины: в левой составляющей формулы всегда будет записан металл, а в правой - кислотный остаток. Стандартная формула соли выглядит следующим образом:

Me n m Кислотный остаток m n .

Физические свойства соли

Химия, как точная наука, вкладывает в название того или иного вещества всю возможную информацию о его составе и возможностях. Так, все наименования солей в современной интерпретации состоят из двух слов: одна часть имеет название металлического составляющего в именительном падеже, вторая - содержит описание кислотного остатка.

Эти соединения не имеют молекулярного строения, поэтому при обычных условиях они представляют собой твердые кристаллические вещества. Многие соли обладают кристаллической решеткой. Кристаллы этих веществ тугоплавки, поэтому для их плавления нужны очень высокие температуры. Например, сульфид бария плавится при температуре около 2200 о С.

По растворимости соли делятся на растворимые, малорастворимые и нерастворимые. Примером первых могут служить хлорид натрия, нитрат калия. К малорастворимым относят сульфит магния, хлорид свинца. Нерастворимые - это карбонат кальция. Информация о растворимости того или иного вещества содержится в справочной литературе.

Рассматриваемый продукт химической реакции обычно не имеет запаха и обладает разным вкусом. Предположение о том, что все соли соленые - ошибочно. Чистый соленый вкус имеет только один элемент этого класса - наша старая знакома поваренная соль. Существуют сладкие соли бериллия, горькие - магния и безвкусные - например, карбонат кальция (мел обыкновенный).

Большинство данных веществ бесцветно, но среди них имеются и такие, которые имеют характерные окрасы. Например, железа (II) сульфат отличается характерным зеленым цветом, калия перманганат - фиолетовый, а кристаллы хромата калия - ярко-желтые.

Классификация соли

Химия разделяет все виды неорганических солей на несколько основных признаков. Соли, получающиеся при полном замещении водорода в кислоте, называют нормальными или средними. Например, сульфат кальция.

Соль, которая является производной от реакции неполного замещения, называется кислой или основной. Примером такого образования может быть реакция гидросульфата калия:

Основная соль получается при такой реакции, в которой гидроксогруппа не полностью замещается на кислотный остаток. Вещества данного вида могут быть образованны теми металлами, чья валентность равна двум или больше. Типичная формула соли этой группы может быть выведена из такой реакции:

Нормальные, средние и кислые химические соединения образуют классы солей и являются стандартной классификацией этих соединений.

Двойная и смешанная соль

Примером смешанной является кальциевая соль соляной и хлорноватистой кислоты: CaOCl 2.

Номенклатура

Соли, образованные металлами с переменной валентностью, имеют дополнительное обозначение: после формулы в скобках пишут римскими цифрами валентность. Так, существует сульфат железа FeSO 4 (II) и Fe 2 (SO4) 3 (III). В названии солей имеется приставка гидро-, если в ее составе существуют незамещенные атомы водорода. Например, гидрофосфат калия обладает формулой K 2 HPO 4 .

Свойства солей в электролитах

Теория электролитической диссоциации дает собственное толкование химическим свойствам. В свете этой теории соль может быть определена как слабый электролит, который в растворенном виде диссоциирует (распадается) в воде. Таким образом, раствор соли можно представить как комплекс положительных отрицательных ионов, причем первые - это не атомы водорода Н + , а вторые - не атомы гидроксогруппы ОН - . Ионов, которые присутствовали бы во всех видах растворов солей, не существует, поэтому какими-либо общими свойствами они не обладают. Чем меньше заряды ионов, образующих раствор соли, тем лучше они диссоциируют, тем лучше электропроводимость такой жидкой смеси.

Растворы кислых солей

Кислые соли в растворе распадаются на сложные отрицательные ионы, представляющие собой кислотный остаток, и простые анионы, являющиеся положительно заряженными частицами металла.

Например, реакция растворения гидрокарбоната натрия ведет к распаду соли на ионы натрия и остаток НСО 3 - .

Полная формула выглядит таким образом: NaHCO 3 = Na + + HCO 3 - , HCO 3 - = H + + CO 3 2- .

Растворы основных солей

Диссоциация основных солей ведет к образованию анионов кислоты и сложных катионов, состоящих из металлов и гидроксокрупп. Эти сложные катионы, в свою очередь, также способны распадаться в процессе диссоциации. Поэтому в любом растворе соли основной группы присутствуют ионы ОН - . Например, диссоциация хлорида гидроксомагния протекает следующим образом:

Распространение солей

Что такое соль? Этот элемент является одним из самых распространенных химических соединений. Всем известны поваренная соль, мел (карбонат кальция) и прочее. Среди солей карбонатной кислоты самым распространенным является карбонат кальция. Он является составной частью мрамора, известняка, доломита. А еще карбонат кальция — основа для формирования жемчуга и кораллов. Это химическое соединение является неотъемлемой составляющей для формирования твердых покровов у насекомых и скелетов у хордовых животных.

Поваренная соль известна нам с детства. Врачи предостерегают от ее чрезмерного употребления, но в умеренных количествах она крайне необходима для осуществления жизненных процессов в организме. А нужна она для поддержания правильного состава крови и вырабатывания желудочного сока. Физрастворы, неотъемлемая часть инъекций и капельниц, есть не что иное, как раствор поваренной соли.

5.Нитриты, соли азотистой кислоты НNО 2 . Используют прежде всего нитриты щелочных металлов и аммония, меньше - щелочно-земельных и Зd-металлов, Рb и Ag. О ннитритах остальных металлов имеются только отрывочные сведения.

Нитриты металлов в степени окисления +2 образуют кристалогидраты с одной, двумя или четырьмя молекулами воды. Нитриты образуют двойные и тройные соли, напр. CsNO 2 . AgNO 2 или Ba(NO 2) 2 . Ni(NO 2) 2 . 2KNO 2 , а также комплексные соединения, например Na 3 .

Кристаллические структуры известны лишь для нескольких безводных нитритов. Анион NO2 имеет нелинейную конфигурацию; угол ONO 115°, длина связи Н—О 0,115 нм; тип связи М—NO 2 ионно-ковалентный.

Хорошо растворимы в воде нитриты К, Na, Ba, плохо - нитриты Ag, Hg, Сu. С повышением температуры растворимость нитритов увеличивается. Почти все нитриты плохо растворимы в спиртах, эфирах и малополярных растворителях.

Нитриты термически малоустойчивы; плавятся без разложения только нитриты щелочных металлов, нитриты остальных металлов разлагаются при 25-300 °С. Механизм разложение нитритов сложен и включает ряд параллельно-последовательных реакций. Основные газообразные продукты разложения - NO, NO 2 , N 2 и О 2 , твёрдые - оксид металла или элементный металл. Выделение большого количества газов обусловливает взрывное разложение некоторых нитритов, например NH 4 NO 2 , который разлагается на N 2 и Н 2 О.

Характерные особенности нитритов связаны с их термической нестойкостью и способностью нитрит-иона быть как окислителем, так и восстановителем, в зависимости от среды и природы реагентов. В нейтральной среде нитриты обычно восстанавливаются до NO, в кислой окисляются до нитратов. Кислород и СО 2 не взаимодействуют с твердыми нитритами и их водными растворами. Нитриты способствуют разложению азотсодержащих органических веществ, в частности аминов, амидов и др. С органическими галогенидами RXН. реагируют с образованием как нитритов RONO, так и нитросоединений RNO 2 .

Промышленное получение нитритов основано на абсорбции нитрозного газа (смеси NO + NO 2) растворами Na 2 CO 3 или NaOH с последовательной кристализацией NaNO 2 ; нитриты остальных металлоов в промышленности и лабораториях получают обменной реакцией солей металлов с NaNO 2 или восстановлением нитратов этих металлов.

Нитриты применяют для синтеза азокрасителей, в производстве капролактама, в качестве окислителей и восстановителей в резинотехнической, текстильной и металлообрабатывающей промышленности, как консерванты пищевых продуктов. Нитриты например NaNО 2 и KNO 2 , токсичны, вызывают головную боль, рвоту, угнетают дыхание и т.д. При отравлении NaNO 2 в крови образуется метгемоглобин, повреждаются мембраны эритроцитов. Возможно образование нитрозаминов из NaNO 2 и аминов непосредственно в желудочно-кишечном тракте.

6.Сульфаты, соли серной кислоты. Известны средние сульфаты с анионом SO 4 2- кислые, или гидросульфаты, с анионом HSO 4 -, основные, содержащие наряду с анионом SO 4 2- - группы ОН, например Zn 2 (OH) 2 SO 4 . Существуют также двойные сульфаты, включающие два различных катиона. К ним относят две большие группы сульфатов - квасцы, а также шениты M 2 Э(SO 4) 2 . 6H 2 O, где М-однозарядный катион, Э - Mg, Zn и другие двухзарядные катионы. Известен тройной сульфат K 2 SO 4 . MgSO 4 . 2CaSO 4 . 2H 2 O (минерал полигалит), двойные основные сульфаты, например минералы групп алунита и ярозита M 2 SO 4 . Al 2 (SO 4) 3 . 4Al(OH 3 и M 2 SO 4 . Fe 2 (SO 4) 3 . 4Fe(OH) 3 , где М - однозарядный катион. Сульфаты могут входить в состав смешанных солей, напр. 2Na 2 SO 4 . Na 2 CO 3 (минерал беркеит), MgSO 4 . KCl . 3H 2 O (каинит).

Сульфаты - кристаллические вещества, средние и кислые в большенстве случаев хорошо растворимы в воде. Малорастворимы сульфаты кальции, стронция, свинца и некоторые др., практически нерастворимы BaSO 4 , RaSO 4 . Основные сульфаты, как правило, малорастворимы или практически нерастворимы, или гидролизуются водой. Из водных растворов сульфаты могут кристаллизоваться в виде кристаллогидратов. Кристаллогидраты некоторых тяжелых металлов называются купоросами; медный купорос СuSO 4 . 5H 2 O, железный купорос FeSO 4 . 7Н 2 О.

Средние сульфаты щелочных металлов термически устойчивы, в то время как кислые сульфаты при нагревании разлагаются, превращаясь в пиросульфаты: 2KHSO 4 = Н 2 О + K 2 S 2 O 7 . Средние сульфаты др. металлов, а также основные сульфаты при нагревании до достаточно высоких температур, как правило, разлагаются с образованием оксидов металлов и выделением SO 3 .

Сульфаты широко распространены в природе. Они встречаются в виде минералов, например гипс CaSO 4 . H 2 O, мирабилит Na 2 SO 4 . 10Н 2 О, а также входят в состав морской и речной воды.

Многие сульфаты могут быть получены при взаимодействии H 2 SO 4 с металлами, их оксидами и гидроксидами, а также разложением солей летучих кислот серной кислотой.

Неорганические сульфаты находят широкое применение. Например, аммония сульфат -азотное удобрение, натрия сульфат используют в стекольной, бумажной промышленности, производстве вискозы и др. Природные сульфатные минералы - сырье дм промышленного получения соединений различных металлов, строит, материалов и др.

7.Сульфиты, соли сернистой кислоты H 2 SO 3 . Различают средние сульфиты с анионом SO 3 2- и кислые (гидросульфиты) с анионом HSO 3 -. Средние сульфиты - кристаллические вещества. Сульфиты аммония и щелочных металлов хорошо растворимы в воде; растворимость (г в 100 г): (NH 4) 2 SO 3 40,0 (13 °С), К 2 SО 3 106,7 (20 °С). В водных растворах образуют гидросульфиты. Сульфиты щелочно-земельных и некоторых др. металлов практически не растворимы в воде; растворимость MgSO 3 1 г в 100 г (40°С). Известны кристаллогидраты (NH 4) 2 SO 3 . Н 2 O, Na 2 SO 3 . 7H 2 O, К 2 SO 3 . 2Н 2 O, MgSO 3 . 6H 2 O и др.

Безводные сульфиты при нагревании без доступа воздуха в запаянных сосудах диспропорционируют на сульфиды и сульфаты, при нагревании в токе N 2 теряют SO 2 , а при нагревании на воздухе легко окисляются до сульфатов. С SO 2 в водной среде средние сульфиты образуют гидросульфиты. Сульфиты - относительно сильные восстановители, окисляются в растворах хлором, бромом, Н 2 О 2 и др. до сульфатов. Разлагаются сильными кислотами (например, НС1) с выделением SO 2 .

Кристаллические гидросульфиты известны для К, Rb, Cs, NH 4 +, они малоустойчивы. Остальные гидросульфиты существуют только в водных растворах. Плотность NH 4 HSO 3 2,03 г/см3; растворимость в воде (г в 100 г): NH 4 HSО 3 71,8 (0°С), КНSO 3 49 (20 °С).

При нагревании кристаллических гидросульфитов Na или К либо при насыщении SO 2 кишящего раствора пульпы M 2 SO 3 , образуются пиросульфиты (устаревшее -метабисульфиты) М 2 S 2 O 5 - соли неизвестной в свободном состоянии пиросернистой кислоты H 2 S 2 O 5 ; кристаллы, малоустойчивы; плотность (г/см3): Na 2 S 2 O 5 1,48, К 2 S 2 O 5 2,34; выше ~ 160 °С разлагаются с выделением SO 2 ; растворяются в воде (с разложением до HSO 3 -), растворимость (г в 100 г): Na 2 S2O 5 64,4, К 2 S 2 O 5 44,7; образуют гидраты Na 2 S 2 O 5 . 7H 2 O и ЗК 2 S 2 O 5 . 2Н 2 О; восстановители.

Средние сульфиты щелочных металлов получают взаимодействием водного раствора М 2 СО 3 (или МОН) с SO 2 , a MSO 3 - пропусканием SO 2 через водную суспензию MCO 3 ; используют в основном SO 2 из отходящих газов контактных сернокислотных производств. Сульфиты применяют при отбеливании, крашении и печатании тканей, волокон, кож для консервирования зерна, зеленых кормов, кормовых промышленных отходов (NaHSO 3 , Na 2 S 2 О 5). CaSO 3 и Са(НSO 3) 2 - дезинфицирующие средства в виноделии и сахарной промышленности. NaНSO 3 , MgSO 3 , NН 4 НSO 3 - компоненты сульфитного щелока при варке целлюлозы; (NH 4) 2SO 3 - поглотитель SO 2 ; NaHSO 3 - поглотитель H 2 S из отходящих газов производств, восстановитель в производстве сернистых красителей. K 2 S 2 O 5 - компонент кислых фиксажей в фотографии, антиоксидант, антисептик.