ЛЕКЦИЯ № 2

Методы нормирования параметров при проектировании.

Этапы нормирования:

–– выбор номинального значения;

–– установление предельных значений или предельных отклонений

Номинальные значения – выбирают, исходя из требований к прочности, жесткости, кинематической точности машины и др.

Предельные значения – назначают для обеспечения нормальной работы сопряжений из 2-х и более деталей (в размерных цепях).

Методы нормирования:

–– исследовательский: обеспечивает правильность и качество решения для новых задач; весьма затратен.

–– метод аналогов: используется для тривиальных задач. Обеспечивает экономию времени. На основе опыта – расчет посадок с зазором, натягом, подшипников качения и др.


На рабочем чертеже деталей машин конструктором проставляется номинальный размер - общий для всех соединяемых деталей размер, определяемый из расчета на прочность, жесткость или конструктивных соображений. Он служит началом отсчета отклонений.

Любой ли размер конструктор может сделать номинальным?

В соответствии ГОСТ 6636-69 «Нормальные линейные размеры» его необходимо округлять до имеющихся в данном ГОСТе. Ряды нормальных линейных размеров – геометрические прогрессии. Их четыре, они обозначаются Ra5, Ra10, Ra20, Ra40.

Ra5 Ra10 Ra20 Ra40
1,6 1,25 1,12 1,06

Предпочтение отдается размерам из рядов с наиболее крупной градацией – 5-ый ряд наиболее предпочтителен.

Уменьшение числа размеров, ведет к уменьшению типоразмеров режущих и мерительных инструментов, штампов, приспособлений, обеспечивается типизация технологических процессов.

Действительный (истинный) размер – размер, который получается после изготовления и измерения детали, детали, размер с допустимой погрешностью.

d – номинальный размер;

d д – действительный размер, для годности детали он колеблется от d max до d min:

Это предельные размеры.

Проходной предел – предельный размер соответствующий максимальному количеству материала (d max и D min)

Непроходной предел – предельный размер соответствующий минимальному количеству материала (d min и D max)

Упростим задачу. Будем отсчитывать размеры от одной плоскости.

Предельные контуры имеют форму номинальной поверхности (контура) и соответствуют наибольшему d max и наименьшему d min размерам детали.

Линии предельного контура детали П.К

Этот чертеж можно еще упростить, т.к. основная задача – обеспечение точности номинального размера.

Из рисунка видно что наибольшее допустимое колебание размеров характеризуется допуском.



Допуск размера – разность между наибольшим и наименьшим предельными размерами(Т-Tolerance)

Допуск отверстия

Допуск вала

Допуск всегда Т>0. Он определяет допустимую велечину разброса размеров годных деталей в партии.(допуск на изготовление)

Отклонение размера – разность между размером и соответствующим номинальным размером (Е,е-ecart)

Нижние отклонение – разность между наименьшим предельным и номинальным размерами (I,i – inferieur):

Отверстие вал

Верхние отклонение – разность между наибольшим предельным и номинальным размером (S,s – superieur):

Отверстие вал

Нижние и верхнее – предельные отклонения.

Действительное отклонение – алгебраическая разность между действительным и номинальным размерами:

Отверстие вал

Предельные размеры = номинальные размеры + отклонение.

Отверстие

Поле допуска – зона между наибольшим и наименьшим предельным размерами, изображенная графически.

Нулевая линия – линия на схеме поля допуска, соответствующая номинальному размеру или номинальному контуру.

Будем откладывать отклонения по оси у. Это будут координаты относительно нулевой линии предельных контуров. Отклонения могут иметь знак «+» и «-», поле допуска относительно нулевой линии расположится по-разному. (Пример для вала)

Величину допуска можно определить через отклонения:

Допуск – алгебраическая разность верхнего и нижнего отклонения (>0)

Отклонения могут быть е>0, е<0, е=0

Схематическое изображение полей допусков.

Построение полей допуска ведется в масштабе. Поля допусков изображаются прямоугольниками. Относительно нулевой линии прямоугольник расположен так, что верхняя сторона определяет верхние отклонение, нижние – нижнее. Величины отклонений со знаками проставляют у вершин двух правых углов прямоугольников (мкм). Графически высота прямоугольника изображает величину допуска. Длина прямоугольника произвольна.

Нулевая линия, определяет номинальный размер (в мм)

В справочниках d, D – в мм; отклонения es, ei, ES, EJ и допуски TD, Td в мкм, 1 мкм = 10 -6 м = 10-3 мм.

Пример. Построить поле допуска и проставить отклонения, определить предельные размеры.

d = 40 мм; EJ = 0; TD = 39 мкм (H8); es = -25 мкм; Td = 25 мкм

Отверстие


Основные понятия о размерах, отклонениях, допусках и посадках приведены в ГОСТ 25346-89.

Размер - числовое значение линейной величины (диаметра, длины и т.п.) в выбранных единицах измерения.

Действительный размер - размер элемента, установленный измерением.

Предельные размеры - два предельно допустимых размера элемента, между которыми должен находиться (или которым может быть равен) действительный размер.

Наибольший предельный размер - наибольший допустимый размер элемента (рис. 2.1, а).

Рис. 2.1. а - на чертеже соединения; б - на схеме полей допусков

Наименьший предельный размер - наименьший допустимый размер элемента (см. рис. 2.1, а).

Номинальный размер - размер, относительно которого определяются отклонения (см. рис. 2.1, а).

Отклонение - алгебраическая разность между размером (действительным или предельным) и соответствующим номинальным размером.

Верхнее отклонение (ES , es) - алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами (см. рис. 2.1).

Нижнее отклонение (El, ei) - алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами (см. рис. 2.1).

Основное отклонение - одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. В принятой системе допусков и посадок (см. п. 2.3) основным является отклонение, ближайшее к нулевой линии.

Нулевая линия - линия, соответствующая номинальному размеру, от которой откладывают отклонения размеров при графическом изображении полей допусков и посадок. Если нулевая линия расположена горизонтально, то положительные отклонения откладывают вверх от нее, а отрицательные - вниз (рис. 2.1, б).

Допуск Т - разность между наибольшим и наименьшим предельными размерами или алгебраическая разность между верхним и нижним отклонениями (см. рис. 2.1).

Поле допуска - поле, ограниченное наибольшим и наименьшим предельными размерами и определяемое величиной допуска и его положением относительно номинального размера. При графическом изображении поле допуска заключено между двумя линиями, соответствующими верхнему и нижнему отклонениям относительно нулевой линии (см. рис. 2.1, б).

Вал - термин, условно применяемый для обозначений наружных элементов деталей, включая и нецилиндрические элементы.

Отверстие - термин, условно применяемый для обозначения внутренних элементов деталей, включая и нецилиндрические элементы.

Основной вал - вал, верхнее отклонение которого равно нулю.

Основное отверстие - отверстие, нижнее отклонение которого равно нулю.

Посадка - характер соединения двух деталей, определяемый разностью их размеров до сборки.

Номинальный размер посадки - номинальный размер, общий для отверстия и вала, составляющих соединение.

Допуск посадки - сумма допусков отверстия и вала, составляющих соединение.

Зазор - разность между размерами отверстия и вала до сборки, если размер отверстия больше размера вала (рис. 2.2, а).

Натяг - разность между размерами вала и отверстия до сборки, если размер вала больше размера отверстия (рис. 2.2, б).

Посадка с зазором - посадка, при которой всегда образуется зазор в соединении, т.е. наименьший предельный размер отверстия больше наибольшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено над полем допуска вала (см. рис. 2.2, а).

Рис. 2.2. а - с зазором; б - с натягом; в - по переходной посадке

Посадка с натягом - посадка, при которой всегда образуется натяг в соединении, т.е. наибольший предельный размер отверстия меньше наименьшего предельного размера вала или равен ему. При графическом изображении поле допуска отверстия расположено под полем допуска вала (см. рис. 2.2, б).

Переходная посадка - посадка, при которой возможно получение как зазора, так и натяга в соединении в зависимости от действительных размеров отверстия и вала. При графическом изображении поля допусков отверстия и вала перекрываются полностью или частично (см. рис. 2.2, в).

Наименьший зазор - разность между наименьшим предельным размером отверстия и наибольшим предельным размером вала в посадке с зазором (см. рис. 2.2, а).

Наибольший зазор - разность между наибольшим предельным размером отверстия и наименьшим предельным размером вала в посадке с зазором или в переходной посадке (см. рис. 2.2, я, в).

Наименьший натяг - разность между наименьшим предельным размером вала и наибольшим предельным размером отверстия до сборки в посадке с натягом (см. рис. 2.2, б).

Наибольший натяг - разность между наибольшим предельным размером вала и наименьшим предельным размером отверстия до сборки в посадке с натягом или в переходной посадке (см. рис. 2.2, б , в).

Размерные числа, на чертеже, служат основанием для определения размеров изображенного изделия (детали). На рабочих чертежах проставляют номинальные размеры. Это размеры, рассчитанные при конструировании.

Размер, полученный в результате измерения готовой детали, называется действительным. Наибольшим и наименьшим предельными размерами называют установленные наибольшие и наименьшие допустимые значения размеров . Допуском размера называется разность между наибольшим и наименьшим предельными размерами. Разность между результатом измерения и номинальным размером называется отклонением размера – положительным, если размер больше номинального, и отрицательным, если размер меньше номинального.

Разность между наибольшим предельным размером и номинальным называется верхним предельным отклонением , а разность между наименьшим предельным размером и номинальным – нижним предельным отклонением . Отклонения обозначают на чертеже знаком (+) или (-) соответственно. Отклонения пишут вслед за номинальным размером более мелкими цифрами одно под другим, например , где 100 – номинальный размер; +0,023 – верхнее, а -0,012 – нижнее отклонение.

Полем допуска называется зона между нижним и верхним предельными отклонениями. Оба отклонения могут быть отрицательными или положительными. Если одно отклонение равно нулю то оно на чертеже не проставляется. Если поле допуска расположено симметрично, то величину отклонения наносят со знаком “+-“ рядом с размерным числом цифрами такого же размера, например:

Отклонения размеров углов указывают в градусах, минутах и секундах, которые должны быть выражены целыми числами, например 38 град 43`+-24``

При сборке двух деталей, входящих одна в другую, различают охватывающую и охватываемую поверхность . Охватывающая поверхность носит общее название отверстие, а охватываемая – вал. Размер общий для одной и другой детали соединения, называется номинальным . Он служит началом отсчета отклонений. При установлении номинальных размеров для валов и отверстий необходимо расчетные размеры округлять, подбирая ближайшие размеры из ряда номинальных линейных размеров по ГОСТ 6636-60.

Различные соединения деталей машин имеют свое назначение. Все эти соединения можно себе представить как охватывание одной детали другой или как посадку одной детали в другую, причем одни соединения можно собрать и разъединить, а другие собираются и разъединяются с трудом.

Обозначения предельных отклонений размеров на рабочих чертежах деталей и сборочных чертежах должны соответствовать требованиям ГОСТ 2.109-73 и ГОСТ 2.307-68.

При обозначении предельных отклонений размеров необходимо выполнять основные правила:
-линейные размеры и их предельные отклонения на чертежах Указывают в миллиметрах без обозначения единицы измерения;
-на рабочих чертежах предельные отклонения приводят для все размеров, кроме справочных; размеров, определяющих зоны шероховатости, термообработки, покрытия, и для размеров деталей задаваемых с припуском, для которых допускается не указывает предельные отклонения;
-на сборочных чертежах предельные отклонения проставляю для параметров, которые должны быть выполнены и проконтролированы по данному сборочному чертежу, а также для размеров деталей, изображенных на сборочном чертеже, на которые рабочие чертежи не выпускаются.

Примеры обозначения предельных отклонений

Примеры обозначения допусков и посадок на чертежах

7.Основное отклонение - одно из двух предельных отклонений (верхнее или нижнее), определяющее положение поля допуска относительно нулевой линии. В данной системе допусков и посадок основным является отклонение, ближайшее к нулевой линии. Основные отклонения обозначаются буквами латинского алфавита, прописными для отверстий (A...ZC) и строчными для валов (a...zc)

Верхнее отклонение ES, es - алгебраическая разность между наибольшим предельным и соответствующим номинальным размерами

Нижнее отклонение EI, ei - алгебраическая разность между наименьшим предельным и соответствующим номинальным размерами

Заштрихованная область носит название поле допуска размера. Эта область в виде прямоугольника расположена между предельными размерами dmaxиdmin определяет диапазон рассеяния действительных размеров годных деталей. За нулевую линию принято номинальное значение d размера вала. Поле допуска определяется численным значением допуска Td и расположением относительно нулевой линии, т.е. двумя параметрами.

Величины полей допусков обозначают буквами IT и цифрой порядкового номера квалитета. Например: IT5, IT7. Условное обозначение допусков. Размер, для которого указывают поле допуска, обозначают числом (мм), за которым следует условное обозначение, состоящее из буквы/букв и цифры/цифр - обозначающей номер квалитета, например 20g6, 20H8, 30h11 и т.д. Необходимо отметить, что отклонения проставляются с определенными знаками, допуски же величины всегда положительные и знак не указывается.

Допуск размера определяет точность изготовления детали и влияет на показатели качества изделий. С уменьшением допуска деталей, работоспособность которых определяется износом (поршень, цилиндр двигателя внутреннего сгорания) такой важный эксплуатационный показатель, как ресурс работы увеличивается. С другой стороны, уменьшение допусков увеличивает затраты на изготовление.

Для определения численных значений полей допусков изделий стандартами системы ИСО (в России системой ЕСДП – единая система допусков и посадок) установлено 20 квалитетов.

Квалитеты обозначаются цифрами: 01,0,1,2,3,……….18, в порядке понижения точности и увеличения допусков. Обозначение IT8 означает, что допуск на размер установлен по 8-му квалитету точности.

Примерные области применения квалитетов точности в машиностроении таковы:

IT01 поIT3 для высокоточных средств измерений, калибров, шаблонов, для деталей машиностроения такая точность, как правило, не назначается;

IT 4 по IT5 для прецизионных деталей машиностроения.

IT 6 по IT7 точные детали машиностроения, применяются весьма широко;

IT 8 по IT9 средняя точность деталей машиностроения;

IT 10 по IT12 пониженная точность деталей. Все вышеперечисленные квалитеты образуют посадки соединений;

Квалитеты грубее 12-го назначают для нормирования точности свободных, несопрягаемых поверхностей деталей, точности размеров заготовок.

Единица допуска - это зависимость допуска от номинального размера, которая является мерой точности, отражающей влияние технологических, конструктивных и метрологических факторов. Единицы допуска в системах допусков и посадок установлены на основании исследований точности механической обработки деталей. Значение допуска можно рассчитать по формуле T = a·i , где a - число единиц допуска, зависящее от уровня точности (квалитет или степень точности); i - единица допуска.

До́пуск - разность между наибольшим и наименьшим предельными значениями параметров, задаётся на геометрические размеры деталей, механические, физические и химические свойства. Назначается (выбирается) исходя из технологической точности или требований к изделию (продукту)

Для нормирования уровней точности в системах ISO и СЭВ вводятся квалитеты.

Под квалитетом понимается совокупность допусков, изменяющихся в зависимости от номинального размера и соответствующих одинаковой степени точности, определяемой числом единиц допуска а.

В диапазоне до 500мм – 19 квалитетов: 0,1; 0; 1; 2; …; 17.

В диапазоне 500–3150мм – 18 квалитетов.

Посадки с зазором.

Посадкой называется характер соединения деталей, определяемый величиной получающихся в нем зазоров или натягов. Посадка характеризует свободу относительного перемещения соединяемых деталей или степень сопротивления их взаимному смещению.

Посадки с зазором. Посадкой с зазором называется посадка, при которой обеспечивается зазор в соединении (поле допуска отверстия расположено над полем допуска вала). Зазор S - положительная разность размеров отверстия и вала. Зазор обеспечивает возможность относительного перемещения сопряженных деталей.

Посадка с зазором - обеспечивает зазор в соединении, и характеризуется величинами наибольших и наименьших зазоров, при графическом изображении поле допуска отверстия расположен выше поля допуска вала.

В тех случаях, когда одна деталь должна перемещаться относительно другой без качки, следует иметь очень малый зазор: для того чтобы одна деталь могла свободно вращаться в другой (например, вал в отверстии), зазор должен быть больше.

Характер и условия работы подвижных соединений отличаются разнообразием.

Посадки группы Н/h характерны тем, что минимальный зазор в них равен нулю. Они применяются для пар с высокими требованиями к центрированию отверстия и вала, если взаимное перемещение вала и отверстия предусматривается при регулировании, а также при малых скоростях и нагрузках.

Посадку H5/h4 назначают для соединений с высокими требованиями к точности центрирования и направлению, в которых допускается проворачивание и продольное перемещение деталей при регулировании. Эти посадки используют вместо переходных (в том числе для сменных частей). Для вращающихся деталей их применяют только при малых нагрузках и частотах вращения.

Посадку H6/h5 назначают при высоких требованиях к точности центрирования (например, пиноли задней бабки токарного станка, измерительных зубчатых колес при их установке на шпиндели зубоизмерительных приборов).

Посадка H7/h6 (предпочтительная) используется при менее жестких требованиях к точности центрирования (например, сменных зубчатых колес в станках, корпусов под подшипники качения в станках, автомобилях и других машинах).

Посадку H8/h7 (предпочтительную) назначают для центрирующих поверхностей, если можно расширить допуски на изготовление при несколько пониженных требованиях к соосности.

ЕСДП допускает применение посадок группы H/h, образованных из полей допусков квалитетов 9... 12, для соединений с низкими требованиями к точности центрирования (например, для посадки шкивов зубчатых колес, муфт и других деталей на вал с креплением шпонкой для передачи крутящего момента, при невысоких требованиях к точности механизма в целом и небольших нагрузках).

Посадки группы H/g (H5/g4; H6/g5 и H7/g6 - предпочтительная) имеют наименьший гарантированный зазор из всех посадок с зазорами. Их применяют для точных подвижных соединений, требующих гарантированного, но небольшого зазора для обеспечения точного центрирования, например золотника в пневматических устройствах, шпинделя в опорах делительной головки, в плунжерных парах и т. п.

Из всех подвижных посадок наиболее распространены посадки группы H/f (H7/f7 - предпочтительная, H8/f8 и т.п., образованные из полей допусков квалитетов 6, 8 и 9). Например, посадку H7/f7 применяют в подшипниках скольжения электродвигателей малой и средней мощности, поршневых компрессорах, в коробках скоростей станков, центробежных насосах, в двигателях внутреннего сгорания и др.

Посадки группы Н/е (H7/е8, H8/е8 - предпочтительная, H7/е7 и посадки, подобные им, образованные из полей допусков квалитетов 8 и 9) обеспечивают легкоподвижное соединение при жидкостном трении. Их применяют для быстровращающихся валов больших машин. Например, первые две посадки применяют для валов турбогенераторов и электродвигателей, работающих с большими: нагрузками. Посадки Н9/е9 и H8/е8 применяют для крупных подшипников в тяжелом машиностроении, свободно вращающихся на валах зубчатых колес, и для других деталей, включаемых муфтами сцепления, для центрирования крышек цилиндров.

Посадки группы H/d (H8/d9, H9/d9 - предпочтительная и подобные им посадки, образованные из полей допусков квалитетов 7, 10 и 11) применяют сравнительно редко. Например, посадка H7/d8 используется при высокой частоте вращения и относительно малом давлении в крупных подшипниках, а также в сопряжении «поршень - цилиндр» в компрессорах, а посадка H9/d9 - при невысокой точности механизмов.

Посадки группы H/с (H7/с8 и H8/с9) характеризуются значительными гарантированными зазорами, и их применяют для соединений с невысокими требованиями к точности центрирования. Наиболее часто эти посадки назначают для подшипников скольжения (с различными температурными коэффициентами линейного расширения вала и втулки), работающих при повышенных температурах (в паровых турбинах, двигателях, турбокомпрессорах, других машинах, в которых при работе зазоры значительно уменьшаются вследствие того, что вал нагревается и расширяется больше, чем вкладыш подшипника). При выборе подвижных посадок необходимо руководствоваться следующими соображениями: чем больше скорость вращения детали, тем больше должен быть зазор.


Переходные посадки.

Переходные посадки предусмотрены только в точных квалитетах. Переходные посадки обеспечивают хорошее центрирование соединяемых деталей и применяются в неподвижных разъемных соединениях, которые в процессе эксплуатации подвергаются более или менее частой разборке и сборке для осмотра или замены сменных деталей. Высокая точность центрирования и относительная легкость разборки и сборки соединения обеспечиваются ад счет небольших зазоров и натягов. Малые зазоры ограничивают взаимное радиальное смешение деталей в соединениях, а небольшие натяги способствуют их соосности при сборке.

· Характеризуются умеренным гарантированным зазором, достаточным для обеспечения свободного вращения в подшипниках скольжения при консистентной и жидкой смазке в легких и средних режимах работы (умеренные скорости - до 150 рад/с, нагрузки, небольшие температурные деформации).

· Посадки H/js; Js/h - «плотные». Вероятность получения натяга P(N) ≈ 0.5 ... 5% , и, следовательно, в сопряжении образуются преимущественно зазоры. Обеспечивают легкую собираемость.

· Посадка H7/js6 применяется для сопряжения стаканов подшипников с корпусами, небольших шкивов и ручных маховичков с валами.

· Посадки H/k; K/h - «напряженные». Вероятность получения натяга P(N) ≈ 24...68% . Однако из-за влияния отклонений формы, особенно при большой длине соединения, зазоры в большинстве случаев не ощущаются. Обеспечивают хорошее центрирование. Сборка и разборка производится без значительных усилий, например, при помощи ручных молотков.

· Посадка H7/k6 широко применяется для сопряжения зубчатых колес, шкивов, маховиков, муфт с валами.

· Посадки H/m; M/h - «тугие». Вероятность получения натяга P(N) ≈ 60...99,98% . Обладают высокой степенью центрирования. Сборка и разборка осуществляется при значительных усилиях. Разбираются, как правило, только при ремонте.

· Посадка H7/m6 применяется для сопряжения зубчатых колес, шкивов, маховиков, муфт с валами; для установки тонкостенных втулок в корпуса, кулачков на распределительном валу.

· Посадки H/n ; N/h - «глухие». Вероятность получения натяга P(N) ≈ 88...100% . Обладают высокой степенью центрирования. Сборка и разборка осуществляется при значительных усилиях: применяются прессы. Разбираются, как правило, только при капитальном ремонте.

· Посадка H7/n6 применяется для сопряжения тяжело нагруженных зубчатых колес, муфт, кривошипов с валами, для установки постоянных кондукторных втулок в корпусах кондукторов, штифтов и т.п.

Примеры назначения переходных посадок (а - соединение «вал - шестерня»; б - соединение «поршень - поршневой палец - головка шатуна»; в - соединение «вал - маховик»; г - соединение «втулка - корпус»).

Посадки с натягом.

Посадки с гарантированным натягом применяют для получения неподвижных неразъемных соединений, причем относительная неподвижность сопрягаемых деталей обеспечивается благодаря упругим деформациям, возникающим при соединении вала с отверстием. При этом предельные размеры вала больше предельных размеров отверстия. В некоторых случаях для повышения надежности соединения дополнительно используют штифты или другие средства крепления, при этом крутящий момент передается штифтом, а натяг удерживает деталь от осевых перемещений.

Примеры применения посадок с натягом. Частота применяемости предпочтительных посадок с натягом соответствует порядку увеличения гарантированного натяга.

Для соединений тонкостенных деталей, а также деталей со стенками большей толщины, испытывающих небольшие нагрузки, предпочтительной будет посадка Н7/р6. Для соединений кондукторных втулок с корпусом кондуктора, запорных втулок с дополнительным креплением предпочтительными будут посадки H7/r6 , H7/s6. ПосадкаH7/u7 применяется для таких соединений, как втулки подшипников скольжения в тяжелом машиностроении, венцы червячных колес, маховики. Посадки, характеризуемые самыми большими величинами гарантированного натяга -H8/x8 , H8/z8 , применяются для тяжело нагруженных соединений, воспринимающих большие крутящие моменты и осевые силы.

Посадки с натягом предназначены для получения неподвижных неразъемных соединений деталей без дополнительного их крепления.

1. Основные понятия и определения: номинальный размер, предельные размеры, предельные отклонения, допуск, посадка, зазор, натяг. Дать схему расположения полей допусков отверстия и вала для переходной посадки. Обозначить на ней указанные понятия и дать формулы связи между ними.

Размеры подразделяются на истинные, действительные, предельные, номинальные.

Истинный размер – некоторая абсолютная величина, к которой мы стремимся, повышая качество изделий.
Действительный размер – размер элемента установленный измерениями с допустимой погрешностью.

На практике вместо истинного размера используют действительный размер.

Номинальный размер – размер, относительно которого определяют предельные размеры и который служит также началом отсчета отклонений. Для сопрягаемых деталей номинальный размер является общим. Он определяется расчетами на прочность, жесткость и т. д., округляется до наибольшего значения с учетом «нормальных линейных размеров».

Нормальные линейные размеры .

Нормальные линейные размеры применяются с целью уменьшения разнообразия назначаемых конструктором размеров со всеми вытекающими преимуществами (сужением сортамента материалов, номенклатуры мерного, режущего и измерительного инструмента и т. д.).

Ряды нормальных линейных размеров – это геометрические прогрессии со знаменателем. В ряду пять значений. Эти соотношения сохраняются для различных числовых интервалов.

Первый ряд Ra 5 g = 10 = 1,6

0.1; 0.16; 0.25; 0.4; 0.63

1; 1.6; 2.5; 4; 6.3


10; 16; 25; 40; 63

100; 160; 250; 400; 630

Второй ряд Ra 10 g = 10 = 1,25

1; 1.25; 1.6; 2.0; 2.5; 3.2; 4.0; 5.0; 6.3; 8.0

Каждый следующий ряд включает в себя члены предыдущего.

Третий ряд Ra 20 g = 10 = 1,12

Четвертый ряд Ra 40 g = 10 = 1,06

При выборе номинальных размеров, предшествующий ряд предпочтительнее последующего.

Номинальный размер обозначается для отверстий D и вала d.

Предельные размеры: два предельно допустимых размера элемента, между которыми должен находится, или которым может быть равен действительный размер.

Наибольший предельный размер: наибольший допустимый размер элемента, номинальный наоборот.

Dmax, Dmin, dmax, dmin

С целью упрощения обозначения предельных размеров на чертежах введены предельные отклонения от номинального размера.

Верхнем предельным отклонением ES(es) называется алгебраическая разность между наибольшим предельным размером и номинальным размером.

EI = dmax –D для отверстия

es = dmax – d для вала

Нижним предельным отклонением EI(ei)называется алгебраическая разность между наименьшем предельным отклонением и номинальным размером.

EI = dmin – D для отверстия

Ei = dmin – d для вала

Действительным отклонением называется алгебраическая разность между действительным и номинальным размерами.

Значения отклонений могут быть положительным и отрицательным числом.

На машиностроительных чертежах линейные, номинальные, предельные размеры, а также отклонения проставляют в миллиметрах.

Угловые размеры и их предельные отклонения проставляют в градусах, минутах, секундах с указанием единиц.

При равенстве абсолютных величины отклонений 42 + 0,2; 120 + 2

Отклонение, равное нулю на чертежах не проставляют, наносят только одно отклонение – положительное вверху, отрицательное внизу.

Отклонение записывается до последней значащей цифры. Для производства важнее не отклонение, а ширина интервала, который называется допуском.

Допуск – разность между наибольшим и наименьшим предельными размерами или абсолютная величина алгебраической разности между верхним и нижним отклонениями.

TD = Dmax – Dmin = ES – EI

Td = dmax – dmin = es - ei

Допуск всегда положителен, он определяет допускаемое поле рассеивания действующих размеров деталей в партии, которые признаются годными, т. е. он определяет заданную точность изготовления.

Назначения рационального допуска – важная задача, сочетающая в себе экономические и качественные требования производства.

С увеличением допуска качество изделий, как правило, ухудшается, зато стоимость изготовления падает.

Пространство на схеме, ограниченное линиями верхнего и нижнего отклонений называется полем допуска .

Упрощенное изображение полей допусков, при котором схемы отверстий и вала отсутствуют .

Пример: Построить схему расположения полей допусков для валов с номинальным размером 20 и предельными отклонениями

1. es = + 0,02 2. es = + 0,04

ei = - 0,01 ei = + 0,01

T1 = + 0,0,01) = 0,03 мм T2 = 0,04 – 0,01 = 0,03 мм

Сравнительная точность деталей 1 и 2 одинакова. Критерий точности – допуск T1 = T2, но поля допусков разные, т. к. они отличаются расположением относительно номинального размера.


Обозначение отклонений на чертежах.

dmax = d + es

С понятием взаимозаменяемости связано понятие о годности детали. Всякая реальная деталь будет годной если:

dmin < dr < dmax

ei < er < es

Например: валы

dr1 = 20,03 – годен

dr2 = 20,05 – брак исправляемый

dr3 = 20,0 – брак неисправляемый

Понятие о посадках.

Посадкой называется характер соединения деталей, определяемый величиной зазора или натяга.

Зазор – разность размеров отверстия и вала, если размер отверстия больше размера вала.

Подвижные соединения характеризуются наличием зазоров.

Натяг – разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия.

Неподвижные соединения характеризуют, как правило, наличием натяга.

Существуют три типа посадок: с зазором, с натягом и преходящие.

Переходные посадки.

Переходные – посадки при которых в соединениях возможно получение как зазора, так и натяга (поля допусков отверстия и вала перекрываются частично или полностью).

Неподвижные соединения.

Переходные посадки рассчитывают на Smax и Nmax.

Smax = Dmax – dmin = ES – ei

Nmax = dmax – Dmin =es – EI

2. Отклонения от параллельности, перпендикулярности и наклона поверхностей и осей, их нормирование и примеры обозначения на чертеже.

Отклонения расположения поверхности.

Отклонение реального расположения поверхности от его наименьшего расположения.

Виды отклонений расположения.

Отклонение от параллельности – разность наибольшего и наименьшего расстояний между плоскостями в пределах нормируемого участка.

Отклонение от перпендикулярности плоскостей - отклонение угла между плоскостями от прямого угла, выраженное в линейных единицах на длине нормируемого участка.

Отклонение от соосности – наибольшее расстояние (Δ1, Δ2) между осью рассматриваемой поверхности вращения и общей осью вращения.

Отклонение от симметричности относительно базовой плоскости – называется наибольшее расстояние между плоскостью симметрии рассматриваемого элемента и плоскостью симметрии базового элемента в пределах нормируемого участка.

Для контроля соосности используют специальные приспособления.

Отклонения формы должны исключаться из отклонений расположения, поэтому отклонения расположения (от параллельности, перпендикулярности, соосности и т. д.) измеряют от прилегающих прямых и поверхностей, воспроизводимых с помощью дополнительных средств: поверочных линеек, валиков, угольников или специальных приспособлений.


Для контроля соосности применяют специальные приспособления:

В качестве универсальных средств контроля отклонений широко используют координатные измерительные машины.

3. Методы измерения и их отличие.

По способу получения результата измерения различают на:

Прямое измерение – это измерение, измерение в котором искомое значение величины находят непосредственно из опытных данных.

Косвенное измерение – искомую величину находят по известной зависимости между искомой величиной и величинами, определяемыми прямыми измерениями

y=f(a, b,c..h)

Определение плотности однородного тела по его массе и геометрическим размерам.

Различают 2 метода измерения: метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки – значение величины определяется непосредственно по отсчетному устройству измерительного прибора.

Для этого необходимо, чтобы диапазон показаний шкалы был больше значения измеряемой величины.

При методе непосредственной оценки (НО) настройку прибора на нуль производят по базовой поверхности прибора. Под действием различных факторов (изменения температуры, влажности , вибраций и т. д.) может произойти смешение нуля. Поэтому периодически необходимо производить проверку и соответствующую регулировку.

Метод сравнения – измеряемую величину сравнивают с величиной, воспроизводимой мерой. При измерении методом сравнения с мерой результатом наблюдения является отклонение измеряемой величины от значения меры. Значение измеряемой величины от значения меры. Значение измеряемой величины получают алгебраическим суммированием значения меры и отклонения от этой меры, определенного по показанию прибора.

L=М+П

Метод непосредственной оценки Метод сравнения

ДП>L ДП>L-М

Выбор метода измерения определяется соотношением между диапазоном показаний средства измерения и значением измеряемой величины.

Если диапазон меньше измеряемой величины, то используют метод сравнения.

Метод сравнения используют при измерении, контроле деталей в массовом и серийном производствах, т. е. когда нет частых переналадок измерительного прибора.

Для линейных измерений различие двух методов: - относительно, т. к. измерение - это всегда по существу сравнение с единицей, которая так или иначе заложена в средстве измерения.

1. Характеристики системы допусков и посадок гладких цилиндрических соединений: нормальная температура, единица допуска, квалитеты, формула допусков, интервалы диаметров и ряды допусков.

2. Параметры шероховатости Ra, Rz, Rmax. Нормирование и примеры обозначения на чертеже шероховатости поверхности с использованием этих параметров.

3. Приведенный диаметр наружной резьбы. Суммарный допуск среднего диаметра резьбы. Условие годности наружной резьбы по среднему диаметру. Пример обозначения точности резьбы болта на чертеже.

1.Характеристики системы допусков и посадок гладких цилиндрических соединений: основные отклонения валов и отверстий и схемы расположения, поле допуска и его обозначение, предпочтительные поля допусков и схемы их расположения.

2. Параметры шероховатости, S и Sm. Нормирование и примеры обозначения на чертеже шероховатости поверхности с использованием этих параметров.

3. Классификация зубчатых передач по функциональному назначению. Примеры обозначения точности зубчатых колес.

1. Три типа посадок, схема расположения полей допусков и характеристики этих посадок. Примеры обозначения посадок на чертежах.

2. Параметр шероховатости tp. Нормирование и примеры обозначения на чертеже шероховатости поверхности с использованием этого параметра.

3. Погрешности измерения. Классификация составляющих погрешности измерения по причинам их возникновения.

1. Три типа посадок в системе отверстия. Схемы расположения полей допусков и примеры обозначения посадок в системе отверстия на чертеже.

2. Отклонения формы цилиндрических поверхностей, их нормирование и примеры обозначения на чертежах допусков формы цилиндрических поверхностей.

3. Приведенный средний диаметр внутренней резьбы. Суммарный допуск среднего диаметра резьбы. Условие годности внутренней резьбы по среднему диаметру. Пример обозначения точности гайки на чертеже.

1. Три типа посадок в системе вала. Схемы расположения полей допусков и примеры обозначения посадок в системе вала на чертеже.

2. Отклонения формы плоских поверхностей. Их нормирование и примеры обозначения на чертеже допусков формы плоских поверхностей.

3. Нормирование точности зубчатых колес и передач. Принцип комбинирования ном точности. Примеры обозначения точности зубчатых колес.

1.Посадки с зазором. Схемы расположения полей допусков в системе отверстия и системе вала. Применение посадок с зазором и примеры обозначения на чертежах.

2. Принципы нормирования отклонений формы и обозначение допусков формы на чертежах. Отклонения формы поверхностей, основные определения.

3. Случайные погрешности измерения и их оценка.

1. Посадки с натягом. Схемы расположения полей допусков в системе отверстия и вала. Применение посадок с натягом и примеры обозначения на чертежах.

2. высотные параметры шероховатости поверхности. Нормирование и примеры обозначения на чертежах шероховатости поверхности с использованием высотных параметров.

3. Нормирование точности метрической резьбы. Примеры обозначения на чертежах посадок резьбовых соединений с зазором.

1.Переходные посадки. Схемы расположения полей допусков в системе вала и отверстия. Применение переходных посадок и примеры обозначения на чертеже.

2. Шаговые параметры шероховатости поверхности. Нормирование и примеры обозначения на чертеже шероховатости поверхности с использованием шаговых параметров.

3. Кинематическая точность зубчатых колес и передач, ее нормирование. Пример обозначения точности зубчатого колеса для отсчетных передач.

2. Параметр формы шероховатости. Нормирование и примеры обозначения на чертежах шероховатости поверхности с использованием параметра формы.

3. Систематические погрешности измерения, способы их обнаружения и устранения.

2. Обозначение на чертежах шероховатости поверхности. Примеры обозначения шероховатости поверхности, вид обработки, который конструктором не устанавливается; обрабатываемой со снятием слоя материала; сохраняемой в состоянии поставки; обрабатываемой без снятия слоя материала.

3. Основные отклонения диаметров резьбы для посадок с зазором и схемы их расположения. Примеры обозначения посадок метрической резьбы на чертежах.

1. Посадки с зазором. Схемы расположения полей допусков посадок с зазором в системе отверстия. Показать, как изменятся Smax, Smin, Sm, Ts при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах посадок с зазором в системе отверстия.

2. Отклонения расположения поверхностей, их нормирование и примеры обозначения на чертежах допусков расположения поверхностей.

3. Контакт зубьев в передаче и его нормирование. Пример обозначения точности зубчатого колеса для силовой передачи.

1. Посадки с натягом, схемы расположения полей допусков посадок с натягом в системе отверстия. Показать, как изменятся Nmax, Nmin, Nm, TN при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах посадок с натягом в системе отверстия.

2. Шероховатость поверхности, причины ее возникновения. Нормирование шероховатости поверхности и примеры обозначения на чертежах.

3. Выбор средств измерения.

1.Переходные посадки, схемы расположения полей допусков переходных посадок в системе отверстия. Показать, как изменятся Smax, Smin, Sm(Nm), TSN при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах переходных посадок в системе отверстия.

2. Отклонения от соосности и пересечение осей, их нормирование и примеры обозначения на чертежах.

3. Нормирование и обозначение на чертежах точности наружной резьбы.

1. Посадки с зазором. Схемы расположения полей допусков посадок с зазором в системе вала. Показать, как изменятся Smax, Smin, Sm, Ts при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах посадок с зазором в системе вала.

2. Отклонение от симметричности и позиционное отклонение, их нормирование и примеры обозначения на чертежах.

3. Плавность работы зубчатых колес и передач, ее нормирование. Пример обозначения точности зубчатого колеса для скоростной передачи.

1. Посадки с натягом, схемы расположения полей допусков посадок с натягом в системе вала. Показать, как изменятся Nmax, Nmin, Nm, TN при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах посадок с натягом в системе вала.

2. Радиальное и торцевое биения, их нормирование и примеры обозначения на чертеже.

3. Математическая обработка результатов наблюдения. Форма представления результата измерения.

1. Переходные посадки, схемы расположения полей допусков переходных посадок в системе вала. Показать, как изменятся Smax, Smin, Sm(Nm), TSN при изменении допусков соединяемых деталей на один квалитет. Примеры обозначения на чертежах переходных посадок в системе вала.

2.Параметры шероховатости Ra, Rz, Rmax. Примеры применения этих параметров для нормирования шероховатости поверхности.

3. Принципы обеспечения взаимозаменяемости резьбовых соединений. Примеры обозначения точности резьбовых соединений на чертежах.

1.Посадки с зазором и их расчет (выбор). Обозначение посадок с зазором на чертежах. Примеры применения предпочтительных посадок с зазором.

2. Параметры шероховатости поверхности Sm и S. Примеры применения этих параметров для нормирования шероховатости поверхности.

3.Погрешность измерения и ее составляющие. Суммирование погрешностей при прямых и косвенных измерениях.

1. Посадки с натягом и их расчет (выбор). Обозначение посадок с натягом на чертежах. Примеры применения предпочтительных посадок с натягом.

2. Параметр шероховатости tp и примеры его применения для нормирования шероховатости поверхности.

3. Виды сопряжений зубьев колес в передаче. Примеры обозначения точности зубчатых колес.

1. Переходные посадки и их расчет (выбор). Обозначение переходных посадок на чертежах. Примеры применения предпочтительных переходных посадок.

2. Принцип предпочтительности, ряды предпочтительных чисел.

3. Понятие о контроле, контроль предельными калибрами. Схемы расположения полей допусков калибров для контроля отверстий. Расчет и обозначение на чертежах исполнительных размеров калибров-пробок.

1. Посадки подшипников качения в соединениях с корпусом и валом и схемы расположения полей допусков. Примеры обозначения посадок подшипников качения на чертеже.

2. Понятие о взаимозаменяемости и ее видах.

3. Нормирование и обозначение на чертежах точности внутренней резьбы.

1. Выбор посадок подшипников качения в зависимости от вида нагружения колец и класса точности подшипника. Примеры обозначения посадок подшипников качения на чертежах.

3. Понятие о контроле, контроль предельными калибрами. Схемы расположения полей допусков калибров для контроля валов. Расчет и обозначение на чертежах исполнительных размеров калибров-скоб.

1. Схемы расположения полей допусков в соединениях подшипников качения с валом и корпусом. Примеры обозначения посадок подшипников качения на чертежах.

2. Научно-технические принципы стандартизации. Роль стандартизации в обеспечении качества продукции.

3. Боковой зазор в зубчатых передачах и его нормирование. Примеры обозначения точности зубчатых колес.

1.Система отверстия. Схема расположения полей допусков трех типов посадок в системе отверстия. Примеры обозначения посадок в системе отверстия на чертеже.

2. Унификация, симплификация, типизация и агрегатирование и их роль в повышении качества машин и приборов.

3. Диаметральные компенсации погрешностей шага и угла профиля резьбы. Пример обозначения точности резьбы болта с длинной свинчивания, отличающейся от нормальной.

1.Система вала. Схема расположения полей допусков трех типов посадок в системе вала. Примеры обозначения посадок в системе вала на чертежах.

2. Качество продукции и его основные показатели. Аттестация качества продукции.

3. Поле допуска наружной резьбы и его обозначение. Предельные контуры наружной резьбы и условие годности.

Параметр – это независимая или взаимосвязанная величина, характеризующая какое либо изделие или явление (процесс) в целом или их отдельные свойства. Параметры определяют техническую характеристику изделия или процесса преимущественно с точки зрения производительности, основных размеров, конструкции.

Количественно геометрические параметры деталей оценивают посредством линейных размеров.

Размер – числовое значение линейной величины (диаметр, длина и т.д.) в выбранных единицах измерения (в машиностроении, как правило, в миллиметрах).

По назначению размеры разделяются на размеры, определяющие величину и форму детали, и координирующие размеры. Координирующие размеры (у деталей сложной формы и в узлах) определяют необходимое для правильной работы механизма взаимное положение ответственных поверхностей деталей или положение их относительно определенных поверхностей линий и точек, называемых конструктивными базами.

При обработке поверхности детали координируются относительно технологических баз, а при измерении - относительно измерительных баз. При этом важен принцип единства баз. Из этих размеров выделяют функциональные размеры – т. е. размеры, непосредственно влияющих на эксплуатационные показатели машин и служебные функции узлов и деталей и технологические размеры, необходимые непосредственно для изготовления детали и ее контроля.

Номинальный размер - размер, полученный методом расчета по одному из критериев работоспособности (на прочность, жесткость и т.д.), выбранный из конструктивных, технологических, эксплуатационных, эстетических и иных соображений. Этот размер служит началом отсчета отклонений, и относительно его определяют предельные размеры. Для деталей, составляющих соединение, он является общим, и называется номинальным размером соединения.

Номинальные размеры, полученные расчетом, округляют так, чтобы они соответствовали значениям рядов нормальных линейных размеров. Ряды нормальных линейных размеров (ряды Ренара) построены на основе предпочтительных чисел, представляющих собой десятичные ряды, геометрических прогрессий со знаменателями =1,6 для ряда R 5; = 1,25 для ряда R10; -1,12 для ряда R 20; =1,06 для ряда R 40. При выборе предпочтение отдают ряду с более крупной градацией, т.е. ряд R5 следует предпочитать ряду R 10 и т.д.

Действительный размер - размер, установленный измерением с допускаемой погрешностью. Чтобы изделие отвечало своему целевому назначению, его размеры должны быть выдержаны между двумя допустимыми размерами, разность которых образует допуск.

Два предельно допускаемых размера, между которыми должен находиться или одному из которых может быть равен действительный размер, называются предельными размерами. Больший из двух предельных размеров называется наибольшим предельным размером, а меньший - наименьшим предельным размером. Номинальный размеротверстия обозначают латинской прописной буквой D max и D min , вала - d max и d min . (См. рис.1).

Сравнение действительного размера с предельными размерами дает представление о годности детали, для чего ГОСТ 25346- 82 устанавливает понятие проходного и непроходного пределов размера. Предел максимума материала или проходной предел- это максимальное количество материала, а именно наибольший предельный размер вала и наименьший предельный размер отверстия.

Предел минимума материала или непроходной предел - это минимальное количество металла, а именно наименьший предельный размер вала и наибольший предельный размер отверстия.

Для удобства указывают номинальный размер детали, а каждый из двух предельных размеров определяют по его отклонению от этого номинального размера. Абсолютную величину и знак отклонения получают вычитанием номинального размера из соответствующего предельного размера.


О Отверстие

Рис. 1.1. Поля допусков отверстия и вала при посадке с зазором (отклонения отверстия положительные, отклонения вала отрицательные).

Предельные отклонения подразделяют на верхнее и нижнее. Верхнее предельное отклонение отверстия ES и вала es - это алгебраическая разность между наибольшим предельным и номинальным размерами, нижнее предельное отклонение отверстия EI и вала ei - это алгебраическая разность между наименьшим предельным и номинальным размерами.

Для отверстия: ES = D max – D,

Для вала: es = d max – d,

еi = d min – d.

Отклонение является положительным, если предельный размер больше номинального, и отрицательным, если предельный размер меньше номинального.

На машиностроительных чертежах номинальный, предельные размеры и их отклонения проставляются в мм, без указания единиц, например:

Угловые размеры и их предельные отклонения проставляются в градусах, минутах и секундах, c указанием единиц, например 42 0 30’25”.

Предельные отклонения в таблицах допусков указывают в микрометрах. При равенстве абсолютных значений отклонений их указывают один раз со знаком () рядом с номинальным размером, например 60 0,2.

Отклонение, равное 0, на чертежах не проставляется, наносят только одно отклонение - положительное на месте верхнего или отрицательное на месте нижнего предельного отклонения, например 200 +0,2 ; 200 -0,2

Разность между наибольшим и наименьшим предельными размерами или абсолютное значение алгебраической разности между верхним и нижним отклонениями называется допуском на размер (Т). Допуск всегда положителен. Он определяет заданную точность изготовления. С его увеличением качество детали ухудшается, а стоимость уменьшается.

Для упрощения допуски можно изображать графически в виде полей допусков. При этом ось изделия всегда расположена под схемой. Поле допуска - поле, ограниченное верхним и нижним отклонениями. Поле допуска определяется значением допуска и его положением относительно номинального размера. Нулевая линия - линия, соответствующая номинальному размеру, от которой откладываются отклонения размеров при графическом изображении допусков и посадок. При горизонтальном расположении нулевой линии положительные отклонения откладываются вверх от нее, а отрицательные – вниз.



Рис.1.2 Поля допусков отверстия и вал

Соединения.

Машины и механизмы состоят из деталей, которые в процессе работы должны совершать относительные движения или находится в относительном покое. В большинстве случаев детали машин представляют собой определенные комбинации геометрических тел, ограниченных поверхностями простейших форм: плоскими, цилиндрическими, коническими и т. д.

Две детали, элементы которых входят друг в друга, образуют соединение. Такие детали называются сопрягаемыми деталями, а поверхности соединяемых элементов - сопрягаемыми поверхностями. Поверхности тех элементов, которые не входят в соединение с поверхностями других деталей, называется несопрягаемыми поверхностями. Соединения подразделяются по геометрической форме сопрягаемых поверхностей. Соединение деталей, имеющих сопрягаемые цилиндрические поверхности с круглым поперечным сечением, называется гладким цилиндрическим.

В соединении элементов двух деталей один из элементов является внутренним (охватывающим), другой – наружным (охватываемым). В системе допусков и посадок гладких соединений всякий наружный элемент условно называется валом, а всякий внутренний – отверстием. Эти термины распространяются и на несопрягаемые элементы.

Разность размеров отверстия и вала до сборки определяет характер соединения деталей, или посадку, т. е. большую или меньшую свободу относительного перемещения деталей или степень сопротивления их взаимному смещению.

Разность размеров отверстия и вала, если размер отверстия больше размера вала, называется зазором S=D-d.

Разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия, называется натягом N = d-D.

Зазор характеризует большую или меньшую свободу относительного перемещения деталей соединения.

Натяг - степень сопротивления взаимному смещению деталей в соединении, т.е. прочность их неподвижного соединения.

В необходимых случаях зазор может быть выражен как натяг со знаком (-);

S=(-N), а натяг как зазор со знаком (-); N=(-S).