Поскольку в последнее время очень широко распространилось применение асинхронного двигателя , в связи с его простотой, надежностью и небольшой ценой. Это стало причиной его широкого применения в промышленности. С целью улучшения его характеристик и продления срока работы, имеется большое число различных приспособлений, способных к регулировке, старту, либо защите движка. Вот об одном из них я и расскажу в этой статье.

Этим устройством является устройство плавного пуска электродвигателя (сокращенно УПП), иначе называемое софт-стартером, несмотря на то, что это название можно использовать к любым приспособлениям, способным выполнить плавный старт движка.

УПП асинхронных двигателей современного типа сменяет собой все прежние методы, вроде старта способом «переключение звезда-треугольник», либо пуска при помощи реостата. Необходимо иметь ввиду тот факт, что способ этот не дешев, следовательно, использование его должно быть оправдано. Само собой разумеется, что стоимость устройства сильно зависит от требуемой мощности, стартового функционала и защитных свойств и колеблется от 2 до 10 тысяч рублей, а иногда и более.

Принцип действия

Во время старта мотора, появляется немалый пусковой момент (вследствие необходимости преодоления нагрузочного момента на валу).

Для создания этого момента, двигатели забирают из сети большое количество энергии, что является одной из пусковых проблем – просадкой напряжения.

Этот фактор может плохо повлиять на других потребителей энергии, находящихся в этой сети. Еще одним неприятным фактором является возможность повреждение механических частей привода вследствие резкого пускового рывка.

Другую проблему при запуске создают немалые стартовые токи. Такие токи, при протекании по обмоткам мотора, выделяют очень много тепла, создавая опасность повреждения изоляции обмоток и выхода из строя двигателя в результате виткового замыкания.

Вот для избавления от всех подобных проявлений отрицательного характера во время старта двигателя и применяют УПП, позволяющее уменьшить токи старта, в результате чего значительно уменьшить просадки напряжения и, как следствие, нагрев обмоток.

Снижая стартовые токи, мы снижаем пусковой момент, в результате чего происходит смягчение ударов во время пуска и, как следствие, сохранение механических деталей привода. Весьма немалым плюсом УПП следует считать то, что при запуске нет рывков, а ускорение плавное.

По внешнему виду такое устройство представляет из себя прямоугольной формы модуль со средними размерами, имеющий контакты, к которым подключают мотор и цепи управления. Некоторые из таких устройств имеют ЖК-экран, индикаторы и кнопки, которые позволяют задавать разные пусковые режимы, выполнять съем показаний, ограничение тока и т.д. Кроме того, устройства оснащаются сетевым разъемом, при помощи которого выполняют его программирование и обмен данными.

Хотя эти устройства и именуются устройствами плавного пуска электродвигателя, но позволяют они выполнять не только старт, но и остановку движка. Помимо этого, в них имеется всевозможный защитный функционал, такой как, например, защита от КЗ, тепловая защита, контроль пропадания фаз, превышения токов пуска и изменения питающего напряжения. Помимо этого, в устройствах имеется память, в которую записываются возникающие ошибки. Следовательно, при помощи сетевого разъема, можно произвести их считывание и расшифровку.

Реализация плавного старта двигателей с использованием этих устройств происходит посредством медленного подъема напряжения (при этом мотор плавно разгоняется) и уменьшения токов запуска. Параметры, которые при этом подлежат регулировке, это, как правило, первичное напряжение, разгонное время и время остановки. Делать первичное напряжение слишком маленьким не выгодно, т.к. при этом значительно снижается момент пуска, по этой причине он устанавливается в пределах 0.3-0.6 от номинала.
При старте напряжение быстро поднимается до выставленного заранее напряжения старта, после чего, в течение установленного разгонного времени, медленно увеличивается до номинала. Движок в это время плавно, но быстро разгоняется до необходимой скорости.

Сейчас такие устройства изготавливают многие предприятия (в основном зарубежные). Функций у них много и их можно программировать. Однако, при всем этом, у них есть один большой минус – достаточно большая стоимость. Но есть возможность создания подобного устройства и своими руками, тогда оно будет стоить значительно дешевле.

Устройство плавного пуска электродвигателя своими руками

Приведу одну из возможных схем подобного устройства. Основой для построения такого устройства может стать регулятор мощности фазового типа, выполненный в виде микросхемы КР1182ПМ1. В этой схеме их установлено три (на каждую фазу свой). Схема представлена на рисунке ниже.

Данная схема предназначена для работы с двигателем 380в*50гц. Обмотки мотора соединены в «звезду» и подключены на выходные цепи схемы (они имеют обозначения L11, L2, L3). Общая точка обмоток движка цепляется на вывод сетевой нейтрали (N). Цепи выхода выполнены на встречно-параллельных парах тиристоров импортного производства, имеющих при малой цене достаточно высокие показатели.

Питание на схему приходит после того, как замкнется главный выключатель g1. Но, движок еще не запускается. Причина этому – обесточенные обмотки релюх к1-к3, вследствие чего, выводы 3 и 6 микросхем оказываются зашунтированными их нормально-закрытыми контактами (через сопротивления r1-r3). В результате этого, емкости с1-с3 не заряжаются, а микросхемы не вырабатывают импульсы управления.

Запуск схемы выполняется путем замыкания тумблера sa1. Это приводит к подаче напряжения 12 вольт на обмотки реле, что, в свою очередь, дает возможность заряда конденсаторов и, как следствие, увеличения угла открывания тиристоров. С помощью этого достигается плавный подъем напряжения обмоток двигателя. При достижении полного заряда конденсаторов, тиристоры откроются на наибольший угол, чем будет достигнута номинальная частота вращения движка.

Чтобы отключить двигатель, достаточно разомкнуть контакты sa1, что заставит отключиться релюхи и процесс пойдет в обратном направлении, обеспечив торможение двигателя.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

У всех кто пользуется болгаркой не один год, она ломалась. Поначалу каждый мастер пытался отремонтировать шлифовальную машинку сверкающую искрами самостоятельно, надеясь, что она заработает после замены щёток. Обычно после такой попытки, сломанный инструмент остается лежать на полке с прогоревшими обмотками. А на замену покупается новая болгарка.

Дрели, шуруповёрты, перфораторы, фрезеры в обязательном порядке оборудованы регулятором набора оборотов. Некоторые так называемые калибровочные шлифмашинки также снабжаются регулятором, а обычные болгарки имеют только кнопку включения.

Маломощные болгарки производители не усложняют дополнительными схемами преднамеренно, ведь такой электроинструмент должен стоить дешево. Понятно конечно, что срок службы недорого инструмента всегда короче, чем у более дорогого профессионального.

Самую простую болгарку можно модернизировать, так что у неё перестанут повреждаться редуктор и обмоточные провода якоря. Эти неприятности преимущественно происходят при резком, другими словами, ударном пуске болгарки.

Вся модернизация заключается всего лишь в сборке электронной схемы и закреплении её в коробке. В отдельном коробке, потому что в ручке шлифмашинки очень мало места.

Проверенная, рабочая схема выложена ниже. Она первоначально предназначалась для регулировки накала ламп, то есть для работы на активную нагрузку. Её главное достоинство? простота.

  1. Изюминкой устройства плавного пуска, принципиальную схему которого вы видите, является микросхема К1182ПМ1Р. Эта микросхема узкоспециализированная, отечественного производства.
  2. Время разгона можно увеличить, выбрав конденсатор С3 большей емкости. Во время заряжания этого конденсатора, электродвигатель набирает обороты до максимума.
  3. Не нужно ставить взамен резистора R1 переменное сопротивление. Резистор сопротивлением 68 кОм оптимально подобран для этой схемы. При такой настройке можно плавно запустить болгарку мощностью от 600 до 1500 Вт.
  4. Если собираетесь собрать регулятор мощности, тогда нужно заменить резистор R1 переменным сопротивлением. Сопротивление в 100 кОм, и больше, не занижает напряжение на выходе. Замкнув ножки микросхемы накоротко, можно вовсе выключить подключенную болгарку.
  5. Вставив в силовую цепь семистор VS1 типа ТС-122-25, то есть на 25А, можно плавно запускать практически любую доступную в продаже шлифмашинку, мощностью от 600 до 2700 Вт. И остается большой запас по мощности на случай заклинивания шлифмашинки. Для подключения болгарок мощностью до 1500 Вт, достаточно импортных семисторов BT139, BT140. Эти менее мощные электронные ключи дешевле.

Семистор в приведенной выше схеме полностью не открывается, он отрезает около 15В сетевого напряжения. Такое падения напряжения никак не сказывается на работе болгарки. Но при нагреве семистора, обороты подключенного инструмента сильно снижаются. Эта проблема решается установкой радиатора.

У этой простой схемы есть ещё один недостаток – несовместимость её с установленным в инструмент регулятором оборотов.

Собранную схему нужно запрятать в коробок из пластмассы. Корпус из изоляционного материала важен, ведь нужно обезопасить себя от сетевого напряжения. В магазине электротоваров можно купить распределительную коробку.

К коробке прикручивается розетка и подключается кабель с вилкой, что делает эту конструкцию внешне похожей на удлинитель.

Если позволяет опыт и есть желание, можно собрать более сложную схему плавного пуска. Приведенная ниже принципиальная схема является стандартной для модуля XS–12. Этот модуль устанавливается в электроинструмент при заводском производстве.

Если нужно менять обороты подключенного электродвигателя, тогда схема усложняется: устанавливается подстроечный, на 100 кОм, и регулировочный резистор на 50 кОм. А можно просто и грубо внедрить переменник на 470 кОм между резистором 47 кОм и диодом.

Параллельно конденсатору С2 желательно подсоединить резистор сопротивлением 1 МОм (на приведенной ниже схеме он не показан).

Напряжение питания микросхемы LM358 находится в пределах от 5 до 35В. Напряжение в цепи питания не превышает 25В. Поэтому можно обойтись и без дополнительно стабилитрона DZ.

Какую бы вы схему плавного пуска ни собрали, никогда не включайте подключенный к ней инструмент под нагрузкой. Любой плавный пуск можно сжечь, если торопиться. Подождите пока болгарка раскрутиться, а затем работайте.

Ремонт стиральной машины своими руками Ремонт трансформаторов с заваренными сердечниками. Аккумулятор из литий ионных батареек своими руками: как правильно заряжать

  • асинхронные,
  • коллекторные;
  • синхронные.

Любой из перечисленных движков является частью электропривода, который предназначен для его связи с полезной нагрузкой. В зависимости от того, какая это нагрузка, электродвигатель отключается и затем снова запускается. Далее более подробно расскажем о том, что происходит при пуске электродвигателя и как оптимизировать этот процесс.

Что происходит при пуске асинхронного двигателя

Для понимания того, какое устройство применить для плавного пуска электродвигателя, надо знать принцип его работы. Самые распространенные двигатели – асинхронные с короткозамкнутым ротором. Их простая конструкция и соответствующая надежность и обусловили популярность этих электрических машин. Хотя ротор вращается, и его форма оптимизирована под этот процесс, он – не что иное, как вторичная обмотка трансформатора.

А, как известно, если в первичной обмотке течет ток, то в ее сердечнике появляется электромагнитное поле. Перечисленные функции в асинхронном движке выполняет статор. Его магнитное поле, которое, в отличие от трансформатора, вращается вокруг ротора, индуцирует в нем токи, связанные с этим вращением. И чем больше разница скоростей поля и ротора, тем больше ток в последнем. Ведь ротор – это обмотка, замкнутая накоротко. А раз существует трансформаторная связь, значит, токи в обмотках зависимы прямо пропорционально.

Теперь перечислим условия, которые существуют при пуске асинхронного двигателя, питающегося от промышленной сети. Сначала рассмотрим трехфазный вариант:

  • неизменное напряжение;
  • неизменная частота;
  • ротор в состоянии покоя.

Присоединение асинхронного движка к электросети мгновенно создает вращающееся магнитное поле. При этом разница скоростей его и ротора (так называемое скольжение, выражаемое в процентах от скорости вращения электромагнитного поля статора) получается максимальной. И, как следствие этого, – как бы режим короткого замыкания трансформатора. Если мощность движка велика, пусковые токи получаются на уровне тех, что для трансформаторов аналогичной электрической мощности считаются аварийными.

Какое устройство применить для их ограничения, вполне понятно. Оно должно:

  • либо уменьшить величину напряжения на обмотках статора на время разгона ротора;
  • либо раскрутить ротор до присоединения статора к электросети.
  • Также можно внести конструктивные изменения в асинхронный двигатель.

Переключение схемы обмоток

Привести в движение ротор можно лишь в определенных электроприводах. По этой причине такой способ не является типичным. Остаются два, первый из которых наиболее широко используется. Но получить падение напряжения без потерь не так просто. В трехфазной цепи это можно сделать переключением с треугольника на звезду и обратно. Линейное напряжение, приложенное к обмоткам статора движка, обеспечивает в рабочем режиме его более высокую эффективность. Но и пусковой ток в схеме треугольника получается больше.

Поэтому переключение на схему звезда позволяет заметно снизить пусковой ток асинхронного двигателя. Это самый простой способ относительно плавного пуска. В нем применено минимальное число дополнительных элементов, поскольку падение напряжения создается возможностями самой трехфазной электросети. Этими элементами являются коммутаторы, а сама схема показана далее. Но такая простая схема применима лишь в трехфазной сети. В однофазном варианте нет действующего напряжения более низкого, чем фазное.

Использование резисторов

Чтобы получить максимально плавный разгон движка, необходимо использовать элементы, которые обеспечивают соответствующее падение напряжения. С этой целью применяются:

  • резисторы;
  • дроссели (реакторы);
  • автотрансформаторы;
  • магнитные усилители.

Эти способы годятся как для трехфазной, так и для однофазной сети. В любом случае придется задействовать коммутаторы, поскольку в определенный момент потребуется присоединить движок к сети напрямую. Схема с резисторами получается наиболее компактной. Однако по мере увеличения мощности движка соответственно увеличивается и мощность пусковых резисторов. Учитывая обстоятельство их нагревания, время пуска должно быть в пределах их допустимого температурного диапазона. Иначе от перегрева резисторы придут в негодность. Схема плавного пуска на резисторах показана далее.

Использование индуктивностей

Если клонировать схему, можно получить плавный пуск, используя несколько групп резисторов, соединенных параллельно, что облегчит их температурную нагрузку. Но увеличение времени плавного пуска будет сопровождаться увеличением потерь энергии в этих резисторах. По этой причине вместо резисторов применяются индуктивные элементы. В простейшем случае это дроссели. Это более громоздкое и дорогостоящее решение, но ради снижения потерь энергии из-за частых повторных пусков движков приходится его применять. Внешний вид реактора для мощного асинхронного движка представлен ниже.

Если индуктивность, используемую при запуске, выполнить в виде автотрансформатора с подвижным контактом, перемещающимся по виткам обмотки, можно либо оптимально отлаживать процесс пуска, либо управлять им, перемещая подвижный контакт. Недостатком этого варианта будет неизбежное искрение в механическом контакте. По этой причине он применим лишь при сравнительно малых мощностях движков. Схемы устройств плавного пуска с реакторами и автотрансформаторами показаны далее.

Схемы плавного пуска:

а) с реакторами;

б) с автотрансформаторами.

1, 2 и 3 – коммутаторы, управляющие переключением

Для плавного пуска без недостатков, присущих автотрансформаторам с их подвижным контактом, используются магнитные усилители. В них применено подмагничивание, которое позволяет изменять величину индуктивного сопротивления. Конструкция магнитных усилителей довольно-таки разнообразна. Но их главное преимущество – это малый ток и, соответственно, мощность, используемая для управления. В них нет регулировочных контактов, по которым текут большие токи. Одна из схем показана далее.

Двигатель с фазным ротором

Все рассмотренные устройства плавного пуска асинхронного электродвигателя задействованы на стороне его статора. Но когда постоянные повторные включения являются для движка нормальным рабочим процессом, его конструкцию изменяют, делая ротор фазным. Такое конструктивное решение дает возможность более эффективно регулировать токи, возникающие при разгоне двигателя. Конструкция и рекомендации по эксплуатации устройства плавного пуска движка с фазным ротором показаны ниже:

Применение полупроводниковых ключей

Все перечисленные устройства плавного пуска применяются уже много лет. У них имеется важное свойство, которое ставит их как бы вне конкуренции. У этих устройств нет электрических параметров, превышение которых приводит к исчезновению сопротивления (пробою). Следовательно, они наиболее надежны, хотя и морально устарели. Современные устройства плавного пуска используют управляемые полупроводниковые ключи (тиристоры и транзисторы). Это так называемое широтно-импульсное регулирование.

Ключ отсекает часть синусоидального напряжения по времени. В результате среднее значение напряжения можно изменить от нуля и до действующего 220 В. Следовательно, полупроводниковый ключ обеспечивает наиболее эффективный вариант для создания устройства плавного пуска электродвигателя. Но при этом ключ подвержен как тепловому пробою, так и аналогичному воздействию из-за превышения амплитуд напряжения и тока. Поэтому ключ должен эффективно охлаждаться и выбираться соответственно условиям эксплуатации движка.

Устройства с широтно-импульсным регулированием применимы в любой сети, независимо от числа фаз. Одна из таких схем показана ниже. Контакты после разгона ротора замыкаются и предохраняют ключи от повреждения скачками тока и напряжения.

Плавный пуск коллекторных электродвигателей

Несмотря на принципиальные отличия конструкции в сравнении с асинхронными, пуск коллекторных движков также сопровождается большим током якоря, который является ротором. По сути, это сборка из дросселей с последовательной коммутацией каждого из них. Чем дольше экспозиция напряжения на ламелях коллектора, что и получается сразу после включения и подачи напряжения, тем сильнее намагничивание сердечника и больше величина, которой ток успевает достичь.

При исполнении статора в виде постоянного магнита источник питания необходим лишь якорю. Но в таком случае его напряжение может быть только постоянным. Устройство плавного пуска, питаемое этим источником, делается только на элементах, способных создать падение постоянного напряжения.

Этими элементами являются:

  • резисторы,
  • транзисторы,
  • запираемые тиристоры.

Если статор выполнен как электромагнит, значит, возможна работа движка на переменном напряжении. При упомянутом для коллекторных движков подходят те же проверенные временем устройства плавного пуска, которые применимы для однофазных асинхронных двигателей:

  • резисторы (реостаты);
  • дроссели (реакторы);
  • автотрансформаторы;
  • магнитные усилители.

А также современные технические решения, основанные на полупроводниковых ключах. Их изображения аналогичны уже показанным выше.

При наличии электромагнитного возбуждения обмотка может соединяться с якорем либо последовательно, либо параллельно. Последовательное соединение безопасно, поскольку в электрической цепи течет общий электрический ток. Ее разрыв или присоединение к источнику питания вызывает одновременное изменение тока в обмотках движка. Но при параллельном соединении возможны варианты развития событий.

Если при подаче напряжения на движок обмотка возбуждения окажется обесточенной, а якорь запитан, появятся условия для явления, именуемого разносом двигателя. При этом ротор, стремясь притянуться к железу статора, поворачивается и разгоняется все быстрее и быстрее. Если к валу не приложен нагрузочный момент, по величине больший, чем создаваемый ротором, разгон может продолжаться до разрушения ротора. Для защиты от разноса необходимо, чтобы:

  • двигатель оставался хотя бы частично нагруженным;
  • имел специальные конструктивные элементы;
  • устройство плавного пуска гарантированно предотвращало этот процесс.

Плавный пуск синхронного двигателя

Синхронные движки, работающие от электросети с любым числом фаз, разгоняются как асинхронные, с использованием скольжения. Затем, превращая ротор в магнит, независимый от статора, происходит выравнивание скоростей вращения поля статора и ротора. По этой причине устройства плавного пуска, применяемые для синхронных двигателей, те же самые, что и для асинхронных. Некоторые отличительные детали, зависящие от питания ротора, можно видеть далее на изображении:

Выводы

В общем устройства плавного пуска всех типов электрических движков аналогичны и основаны на одних и тех же схемах и элементах. Выбор надо делать для конкретных условий, исходя в первую очередь из мощности двигателя. Но современные полупроводниковые ключи позволяют обеспечить в широком диапазоне мощностей наилучшие параметры плавного пуска. Поэтому имеет смысл остановить выбор в первую очередь на них.

Много какой электрический инструмент, особенно прошлых годов выпуска, не оборудован устройством плавного запуска. Такие инструменты запускаются мощным рывком, в результате которого происходит повышенный износ подшипников, шестерён и всех остальных движущихся частей. В лаковых изоляционных покрытиях появляются трещины, которые имеют прямое отношение к преждевременному выходу инструмента из строя.

Чтобы исключить это негативное явление существует не очень сложная схема на интегральном регуляторе мощности, который был разработан ещё в Советском Союзе, но до сих пор его не сложно купить в интернете. Цена от 40 рублей и выше. Называется он КР1182ПМ1. Работает хорошо в разных регулирующих устройствах. Но мы будем собирать систему плавного пуска.

Схема устройства плавного пуска

Теперь рассмотрим саму схему.


Как видите компонентов не очень много и они не дорогие.

Понадобится

  • Микросхема – КР1182ПМ1.
  • R1 – 470 Ом. R2 – 68 килоом.
  • C1 и C2 – 1 микрофарад - 10 вольт.
  • C3 – 47 микрофарад – 10 вольт.
Макетная плата для монтажа компонентов схемы «чтобы не заморачиваться с изготовлением печатной платы».
Мощность устройства зависит от марки симистора, который вы поставите.
Например, среднее значение тока в открытом состоянии у разных симисторов:
  • BT139-600 - 16 ампер,
  • BT138-800 - 12 ампер,
  • BTA41-600 - 41 ампер.

Сборка устройства

Можно поставить и любые другие, какие у вас есть и которые вам подходят по мощности, но нужно учитывать, что чем мощнее симистор, тем меньше он будет греться, а значит, дольше будет работать. В зависимости от нагрузки нужно использовать и радиатор охлаждения для симистора.
Я поставил BTA41-600, для него можно радиатор совсем не ставить, он достаточно мощный и при повторно-кратковременной работе греться не будет, при нагрузке до двух киловатт. Более мощного инструмента у меня просто нет. Если планируете подключать более мощную нагрузку, то задумайтесь об охлаждении.
Соберём детали для монтажа устройства.


Ещё нам потребуется розетка «закрытая» и кабель питания с вилкой.


Макетную плату хорошо подгонять по размерам при помощи больших ножниц. Режется легко, просто и аккуратно.


Размещаем компоненты на макетной плате. Для микросхемы лучше впаять специальное гнездо, стоит копейки, но очень облегчает работу. Нет риска, что перегреете ножки микросхемы, не нужно бояться статического электричества, да и если сгорит микросхема, её заменить можно за пару секунд. Достаточно вынуть сгоревшую и вставить целую.


Детали сразу запаиваем.


Размещаем на плате новые детали, сверяясь со схемой.


Аккуратно припаиваем.


Для симистора гнёзда нужно слегка рассверлить.


И так по порядку.


Вставляем и припаиваем перемычку и другие детали.


Паяем.


Проверяем соответствие со схемой и вставляем в гнездо микросхему, не забывая о ключе.


Готовую схему вставляем в розетку.


Подключаем питание к розетке и схеме.


Смотрите пожалуйста видео испытания этого устройства. Наглядно показано изменение поведения устройства при запуске.
Удачи вам в ваших делах и заботах.

Сопряжен с высокими динамическими нагрузками. За счет массы рабочего диска, в начале вращения на ось редуктора действуют силы инерции. Это влечет за собой некоторые негативные моменты:

  1. Нагрузки на ось при резком старте создают инерционный рывок, который при большом диаметре и массе диска может вырвать электроинструмент из рук;
  2. ВАЖНО! При запуске болгарки, всегда держите инструмент обеими руками, и будьте готовы к его удержанию. В противном случае можно получить травму. Данное предупреждение особенно актуально для тяжелых алмазных или стальных дисков.

  3. При резкой подаче рабочего напряжения на двигатель, возникает перегрузка по току, которая проходит после набора номинальных оборотов;
  4. В результате чего изнашиваются щетки и перегреваются обе обмотки электромотора. При постоянном включении и выключении электроинструмента, перегрев может оплавить изоляцию обмоток и привести к короткому замыканию, с последующим дорогостоящим ремонтом.

  5. Большой крутящий момент при резком наборе оборотов преждевременно изнашивает шестерни редуктора УШМ;
  6. В некоторых случаях возможно отламывание зубьев и заклинивание редуктора.

  7. Перегрузки, которые воспринимает рабочий диск, могут разрушить его при запуске двигателя.
  8. Поэтому наличие защитного кожуха обязательно.

ВАЖНО! Во время запуска болгарки, открытый сектор кожуха должен быть направлен в сторону, противоположную от оператора.

Чтобы лучше понять механику работы, рассмотрим устройство болгарки на чертеже. Хорошо видны все элементы, испытывающие перегрузку при резком старте.

Схематический чертеж расположение рабочих органов и систем управления в болгарке

Для уменьшения пагубных воздействий резкого пуска, производители выпускают болгарки с регулировкой оборотов и плавным пуском.

Регулировка оборотов находится на рукоятке инструмента

Но таким приспособлением оснащаются лишь модели средней и высокой ценовой категории. Многие домашние мастера приобретают УШМ без регулятора и замедления пусковых оборотов. Особенно это касается мощных экземпляров с диаметром отрезного диска более 200 мм. Такую болгарку мало того что тяжело удержать в руках во время запуска, износ механики и электрической части происходит гораздо быстрее.
Выход один – установить плавный пуск болгарки самостоятельно. Существуют готовые заводские устройства с регулятором оборотов и замедлением старта двигателя при запуске.

Готовое устройство для регулировки плавного пуска

Такие блоки устанавливаются внутрь корпуса, при наличии свободного места. Однако, большинство пользователей УШМ предпочитают изготавливать схему для плавного пуска болгарки самостоятельно, и подключать ее в разрыв питающего кабеля.

Как изготовить схему плавного пуска угловой шлифовальной машины своими руками

Популярная схема реализуется на основе управляющей микросхемы фазового регулирования КР118ПМ1, а силовая часть выполнена на симисторах. Такое устройство достаточно просто монтируется, не требует дополнительной настройки после сборки, а стало быть, изготовить ее может мастер без специализированного образования, достаточно уметь держать в руках паяльник.

Электрическая схема регулировки плавного пуска для болгарки

Предложенный блок можно подключить к любому электроинструменту, рассчитанному на переменное напряжение 220 вольт. Отдельный вынос кнопки питания не требуется, доработанный электроинструмент включается штатной клавишей. Схему можно установить как внутрь корпуса болгарки, таки и в разрыв питающего кабеля в отдельном корпусе.

Наиболее практичным является подключение блока плавного пуска к розетке, от которой запитывается электроинструмент. На вход (разъем ХР1) подается питание от сети 220 вольт. К выходу (разъем XS1) подключается расходная розетка, в которую втыкается вилка УШМ.

При замыкании клавиши пуска болгарки, по общей цепи питания подается напряжение на микросхему DA1. На управляющем конденсаторе происходит плавное нарастание напряжения. По мере заряда оно достигает рабочей величины. За счет этого тиристоры в составе микросхемы открываются не сразу, а с задержкой, время которой определяется зарядом конденсатора. Симистор VS1, управляемый тиристорами, открывается с такой же паузой.

Посмотрите видео с подробным разъяснением как сделать и какую схему применить

В каждом полупериоде переменного напряжения, задержка уменьшается в арифметической прогрессии, в результате чего напряжение на входе в электроинструмент плавно возрастает. Этот эффект и определяет плавность запуска двигателя болгарки. Следовательно обороты диска возрастают постепенно, и вал редуктора не испытывает инерционного шока.

Время набора оборотов до рабочего значения определяется емкостью конденсатора С2. Величина 47 мкФ обеспечивает плавный пуск за 2 секунды. При такой задержке нет особого дискомфорта для начала работы с инструментом, и в то же время сам электроинструмент не подвергается избыточным нагрузкам от резкого старта.

После выключения УШМ, конденсатор С2 разряжается сопротивлением резистора R1. При номинале 68 кОм время разряда составляет 3 секунды. После чего устройство плавного пуска готово к новому циклу запуска болгарки.
При небольшой доработке, схему можно модернизировать до регулятора оборотов двигателя. Для этого резистор R1 заменяется на переменный. Регулируя сопротивление, мы контролируем мощность двигателя, меняя его обороты.

Таким образом, в одном корпусе можно выполнить регулятор оборотов двигателя и устройство плавного пуска электроинструмента.

Остальные детали схемы работают следующим образом:

  • Резистор R2 контролирует величину силы тока, протекающую через управляющий вход симистора VS1;
  • Конденсаторы С1 и С2 являются компонентами управления микросхемой КР118ПМ1, используемыми в типовой схеме включения.

Для простоты и компактности монтажа, резисторы и конденсаторы припаиваются прямо к ножкам микросхемы.

Симистор VS1 может быть любым, со следующими характеристиками: максимальное напряжение до 400 вольт, минимальный пропускной ток 25 ампер. Величина тока зависит от мощности угловой шлифовальной машины.

По причине плавного пуска болгарки, ток не будет превышать номинального рабочего значения для выбранного электроинструмента. Для экстренных случаев, например, заклинивания диска УШМ – необходим запас по току. Поэтому значение номинальной величины в амперах следует увеличить вдвое.

Номиналы радиодеталей, использованных в предлагаемой электросхеме – испытаны на УШМ мощностью 2 кВт. Запас по мощности имеется до 5 кВт, это связано с особенностью работы микросхемы КР118ПМ1.
Схема рабочая, многократно исполненная домашними мастерами.