Главный угол в плане φ определяет соотношение между шириной и толщиной среза при постоянных значениях подачи и глубины резания. С уменьшением главного угла в плане φ уменьшается толщина среза и увеличивается его ширина. Это приводит к увеличению активной длины кромки, т. е. длины, находящейся в соприкосновении с заготовкой. Сила и температура резания, приходящиеся на единицу длины кромки, уменьшаются, а вместе с этим снижается и износ резца. С уменьшением угла φ резко возрастает радиальная составляющая силы резания Ру, что может повести к прогибу заготовки и даже к вырыванию ее из центров при недостаточном креплении. Одновременно могут появиться и вибрации при работе.

Экспернментальные работы показывают, что с уменьшением угла φ при постоянной подаче стойкость резца резко увеличивается, тогда как при постоянной толщине среза стойкость резца остается почти постоянной вне зависимости от изменения угла φ. Отсюда следует, что на стойкость резца оказывает влияние в основном толщина среза - примерно такое же, как и угол φ. С увеличением толщины среза степень влияния ее на стойкость возрастает. Следовательно, для повышения производительности рекомендуется применять малые углы φ при постоянной толщине среза, максимально допустимой в отношении прочности режущей кромки и при соответствующем (возможном) повышении подачи согласно формуле s=a/sin φ .Такой выбор режима резания возможен только при условии жесткости и виброустойчивости системы СПИД и при небольшом припуске на обработку. Рекомендуется применять углы в плане φ (в град.):

Для чистовой обработки в жестких условиях... 10-20

При обработке в жестких условиях, если l/d <6 ... 30-45

При работе в нежестких условиях l/d=6-12 ... 60-75

При обработке длинных заготовок малого диаметра l/d>12 ... 90

Рис. 7 - Главный угол в плане φ

Так, например, при обработке больших и массивных детален на крупных станках большой жесткости выгодно с точки зрения наибольшей стойкости применяй, резцы с углом в плане 10-20°. Наоборот, при обработке нежестких деталей, например валиков, втулок, гаечных метчиков, сверл, разверток и т. п., рекомендуется работать с большими углами в плане φ = 60-75°. При наличии у этих деталей буртиков, ступеней целесообразно применять резцы с φ = 90°. Они позволяют производить наряду с обработкой на проход также и поперечное обтачивание и таким образом отпадает надобность в смене резца. Для деталей типа ступенчатых валиков при такой обработке получается большая экономия во времени, связанном с перестановкой резцов. В станкостроении имеется значительное количество таких деталей; по этой причине станкостроители часто применяют резцы с φ - 90°.

Передний угол оказывает большое влияние на виброустойчивость резца, которая резко снижается с уменьшением его величины (от нуля и ниже). Поэтому во избежание появления вибраций необходимо принимать передний угол 15-25°, причем обычно он делается равным углу врезания пластинки.

В целях обеспечения завивания стружки и благоприятного отвода ее, рекомендуется переднюю поверхность резца делать или криволинейной, или с лункой. Для упрочнения главной режущей кромки целесообразно предусмотреть ленточку шириной 0,2-0,3 мм с отрицательным передним углом -3 — 5°. Однако не следует забывать, что такая ленточка допустима только при наличии достаточно жестких условий работы резца. 15 случае, если условия жесткости не позволяют применять упрочняющую ленточку с отрицательным углом, рекомендуется делать ее с положительным углом 5° для твердых и 10° для мягких и вязких материалов.

Упрочняющая ленточка при небольшой ее ширине не оказывает влияния на величину сопротивления резанию, так как центр давления стружки выходит за границу ленточки в зону криволинейной передней поверхности, снабженной большим передним углом.

Рисунок 1 — Углы отрезного резца

В практике встречаются отрезные резцы, у которых передняя поверхность оформляется в виде двухгранного угла (рис. 1, б). Плоскости его наклонены к опорной плоскости под углом μ = 10÷15°. Линия пересечения этих плоскостей расположена параллельно опорной плоскости. Такая конструкция способствует лучшему врезанию резца в заготовку.

Задний угол

Задний угол главной режущей кромки принимается равным 8º но пластинке и 12° по державке.

Из всех видов токарных резцов наиболее распространенными являются проходные резцы. Они предназначены для точения наружных поверхностей, подрезки торцов, уступов и т.д.

Призматическое тело npoходного резца (рис. 1), как и любого другого, состоит из режущей части (головки) и державки. Головка резца содержит переднюю 1, главную заднюю 2 и вспомогательную заднюю 3 поверхности. Пересечения этих поверхностей образуют главную 4 и вспомогательную 5 режущие кромки.

Рис. 1. Конструктивные элементы токарного резца:

1 – передняя поверхность; 2 – главная задняя поверхность;
3 – вспомогательная задняя поверхность; 4 – главная режущая кромка;
5 – вспомогательная режущая кромка

По передней поверхности сходит снимаемая резцом стружка . Главная задняя поверхность обращена к поверхности резания, образуемой главной режущей кромкой, а вспомогательная задняя поверхность – к обработанной поверхности детали.

Указанные поверхности и режущие кромки после заточки располагаются под определенными углами относительно двух координатных плоскостей и направления подачи, выбираемыми с учетом кинематики станка.

За координатные плоскости (рис. 2) принимают две взаимно перпендикулярные плоскости:

1) плоскость резания, проходящую через главную режущую кромку, и вектор скорости резания, касательный к поверхности резания;

2) основную плоскость, проходящую через эту же кромку и нормаль к вектору скорости резания.

Есть другое определение основной плоскости: это плоскость, проходящая через векторы продольной Sпр и радиальной Sр подач; в частном случае может совпадать с основанием резца, и в этом случае возможно измерение углов резца вне станка в его статическом положении.

Рис. 2. Геометрические параметры проходного токарного резца

За вектор скорости резания, применительно к резцам, а также ко многим другим инструментам, принимают вектор окружной скорости детали без учета вектора продольной подачи, который во много раз меньше вектора окружной скорости и не оказывает заметного влияния на величину передних и задних углов. Только в отдельных случаях, применительно, например, к сверлам, в точках режущих кромок, прилегающих к оси сверла, это влияние становится существенным.

На рис. 2 представлены вид заготовки и резца в плане и геометрические параметры, обязательно указываемые на рабочих чертежах резцов: γ, α, α1, φ, φ1. Ниже даны определения и рекомендации по назначению их величин.

Передний и задний углы главной режущей кромки принято измерять в главной секущей плоскости N–N, проходящей нормально к проекции этой кромки на основную плоскость, которая в данном случае совпадает с плоскостью чертежа. Плоскость N–N выбрана в связи с тем, что именно в ней происходит деформация металла при резании.

Передний угол γ – это угол между основной плоскостью и плоскостью, касательной к передней поверхности. Величина этого угла оказывает на процесс резания определяющее влияние, так как от него зависят степень деформации металла при переходе в стружку, силовая и тепловая нагрузки на режущий клин, прочность клина и условия отвода тепла из зоны резания. Оптимальное значение переднего угла γ определяется опытным путем в зависимости от физико-механических свойств обрабатываемого и режущего материалов, факторов режима резания (V, S, t) и других условий обработки. Возможные значения угла γ находятся в пределах 0...30°. Для упрочнения режущего клина, особенно изготовленного из хрупких режущих материалов, на передней поверхности затачивают фаску с нулевым или отрицательным передним углом (γф = 0...–5°), шириной f, зависящей от подачи.

Задний угол α – это угол между плоскостью резания и плоскостью, касательной к задней поверхности. Фактически это угол зазора, препятствующего трению задней поверхности резца о поверхность резания. Он влияет на интенсивность износа резца и в сочетании с углом γ влияет на прочность режущего клина и условия отвода тепла из зоны резания.

Чем меньшую нагрузку испытывает режущий клин и чем он прочнее, тем больше значение угла a, величина которого зависит, таким образом, от сочетания свойств обрабатываемого и режущего материалов, от величины подачи и других условий резания. Например, для резцов из быстрорежущей стали при черновой обработке конструкционных сталей α = 6...8°, для чистовых операций α = 10...12°.

Угол наклона главной режущей кромки λ – это угол между основной плоскостью, проведенной через вершину резца, и режущей кромкой. Он измеряется в плоскости резания и служит для предохранения вершины резца А от выкрашивания, особенно при ударной нагрузке, а также для изменения направления сходящей стружки. Угол λ считается положительным, когда вершина резца занижена по сравнению с другими точками главной режущей кромки и в контакт с заготовкой включается последней. Стружка при этом сходит в направлении обработанной поверхности (от точки В к точке А), что может существенно повысить ее шероховатость. При черновой обработке это допустимо, так как после нее следует чистовая операция, снимающая эти неровности. Но при чистовых операциях, когда нагрузка на режущий клин невелика, первостепенное значение приобретает задача отвода стружки от обработанной поверхности. С этой целью назначают отрицательные значения угла (–λ). При этом вершина резца А является наивысшей точкой режущей кромки, а стружка сходит в направлении от точки А к точке В.

Наличие угла λ усложняет заточку резцов, поэтому практические значения этого угла невелики и находятся в пределах λ = +5…–5°.

Углы в плане φ и φ 1 (главный и вспомогательный) – это углы между направлением продольной подачи Sпр и, соответственно, проекциями главной и вспомогательной режущих кромок на основную плоскость.

Главный угол в плане φ определяет соотношение между толщиной и шириной срезаемого слоя. При уменьшении угла φ стружка становится тоньше, улучшаются условия теплоотвода и тем самым повышается стойкость резца, но при этом возрастает радиальная составляющая силы резания.

При обточке длинных заготовок малого диаметра вышесказанное может привести к их деформации и вибрациям, и в этом случае принимается φ = 90°.

– при чистовой обработке φ = 10...20°;

– при черновой обработке валов (l/d = 6...12) φ = 60...75°;

– при черновой обработке более жестких заготовок φ = 30...45°.

У проходных резцов обычно угол φ1 = 10...15°. С уменьшением угла γ1 до 0 величина h также уменьшается до 0, что позволяет значительно увеличить подачу, а следовательно, и производительность процесса резания.

Вспомогательный задний угол α1, измеряемый в сечении N1 – N1, перпендикулярном к вспомогательной режущей кромке, принимается примерно равным α; α1 образует зазор между вспомогательной задней поверхностью и обработанной поверхностью заготовки.

Вспомогательный передний угол γ1 определяется заточкой передней поверхности и на чертеже обычно не указывается.

С целью повышения прочности режущей части резца предусматривается также радиус скругления его вершины в плане: r = 0,1...3,0 мм. При этом большее значение радиуса применяется при обработке жестких заготовок, так как с увеличением этого радиуса возрастает радиальная составляющая силы резания.

Углы резца относятся к основным геометрическим параметрам его режущей части. Определение, положение и величина их меняется в зависимости от того, рассматриваются ли они в процессе резания, или же вне связи с обрабатываемой заготовкой, т. е. как у геометрического тела.

Рассмотрим углы резца, как углы геометрического тела (Рис. 1). Для удобства понимания необходимо дать определения углов резца.

Главные и вспомомгательные углы резца

Под основной плоскостью понимается плоскость, параллельная к направлениям продольной и поперечной подач.

Рисунок - Главный и вспомогательные углы в плане

φ заключается между проекцией главной режущей кромки на основную плоскость и направлением продольной подачи.

Вспомогательный угол в плане φ1 заключается между проекцией вспомогательной режущей кромки на основную плоскость и направлением продольной подачи.

Угол при вершине (в плане) е заключается между проекциями главной и вспомогательной кромок на основную плоскость.

Угол наклона главной режущей кромки λ , заключается между главной режущей кромкой и линией, проведенной через вершину резца параллельно основной плоскости. Он измеряется и плоскости, проходящей через главную режущую кромку перпендикулярно к основной плоскости. Угол к принимается положительным, если вершина резца является наинизшей точкой главной режущей кромки, и отрицательным, если вершина резца является наивысшей точкой главной режущей кромки, и ранен пулю, если главная режущая кромка расположена параллельно основной плоскости.

Углы φ и φ1 и ε измеряются и основной плоскости.

Передний и задний углы

Для определения переднего и заднего углов резца необходимо ввести понятия о главпой секущей плоскости, в которой подлежат измерению
эти углы. В качестве ее целесообразно принять плоскость NN, перпендикулярную к основной плоскости и к проекции, главной режущей кромки на эту плоскость.

Такая секущая плоскость мало отклоняется от плоскости, в которой происходит процесс отделения стружки при резании, и, кроме того, она упрощает измерение углов резца.

Главный задний угол α заключается между плоскостью, касательной к задней поверхности, и плоскостью, проходящей через главную режущую кромку перпендикулярно основной плоскости.

Главный передний угол γ заключается между плоскостью, касательной к передней поверхности, и плоскостью, проходящей через главную режущую кромку параллельно основной плоскости.

Следует еще различать вспомогательный задиий угол α 1 , измеряемый в секущей плоскости, перпендикулярной к основной плоскости и к проекции вспомогательной режущей кромки на эту плоскость. Он заключается между плоскостью, касательной к задней поверхности, и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости.
Главные углы резца, передний и задний, обычно задаются в главной секущей плоскости NN. Однако при изготовлении приходится еще оперировать этими углами, расположенными в других секущих плоскостях. Например, в продольной плоскости /-/ (апр, упр), расположенной параллельно оси резца и перпендикулярно основной плоскости, и в поперечной плоскости //-// (апоп, упоп )расположенной перпендикулярно оси резца и основной плоскости.

Зависимость между углами

Определим зависимости между этими углами.

Рис. 1 Определение углов резца в различных плоскостях

На Рис. 1 представлены следующие плоскости:

FG - основная плоскость, параллельная направлениям продольной и поперечной подачам (в данном случае совпадающая с опорной плоскостью резца и плоскостью чертежа);
АВ GF - плоскость, проходящая через режущую кромку АВ перпендикулярно к основной плоскости;
АВ GF - плоскость, представляющая заднюю плоскость при рассмотрении задних углов и переднюю плоскость при рассмотрении передних углов;
М NF - плоскость, параллельная плоскости АВ и заключающая в ней угол λ;
В DG и А EF - ограничивающие тело резца плоскости, перпендикулярные к основной плоскости и к проекции режущей кромки на эту плоскость.

Проведем через любую точку R режущей кромки три искомых плоскости:

ROК , в которой находятся углы а и у;
ROG, в которой находятся углы а пр и у пр;
ROF, и которой находятся углы а поп и у поп;

Линия GF пересечения плоскости АВ GF с основной плоскостью составляет угол ω с проекцией режущей кромки.

Рабочая часть осуществляет резание и состоит из следующих элементов.

Передняя поверхность А^- поверхность лезвия, контакти­рующая в процессе резания со срезаемым слоем и стружкой. Задняя поверхность - поверхность лезвия, контактирующая в процессе резания с поверхностями заготовки. Различают глав­ную и вспомогательную задние поверхности. Главная задняя поверхность А а примыкает к главной режущей кромке. Вспо­могательная задняя поверхность А" а примыкает к вспомога­тельной режущей кромке.

Режущая кромка - кромка лезвия инструмента, образуемая пересечением его передней и задней поверхностей. Часть режу­щей кромки, формирующую большую сторону сечения срезаемого слоя, называют главной режущей кромкой К, меньшую сторону сечения срезаемого слоя - вспомогательной режущей кромкой К".

Вершина лезвия - участок режущей кромки в месте пересе­чения двух задних поверхностей. У проходного токарного резца вершиной является участок лезвия в месте пересечения главной и вспомогательной режущих кромок. Вершина может быть ост­рой, закругленной или в виде прямой линии.

Форма лезвия резца определяется конфигурацией и располо­жением его поверхностей и режущих кромок. Взаимное распо­ложение передней и задних поверхностей и режущих кромок в пространстве определяет углы резца. Углы рассматриваются как на неподвижном инструменте (статическая система коорди­нат), так и в процессе резания с учетом траектории движения точек режущих лезвий (кинематическая система координат). Для изготовления и контроля инструмента используется инст­рументальная система координат.

Рассмотрим углы резца в статике, т.е. в статической системе координат. Для определения углов резца вводятся следующие координатные плоскости (рис. 21.5).

Основная плоскость P v - координатная плоскость, проведен­ная через рассматриваемую точку режущей кромки перпенди­кулярно направлению скорости главного или результирующего движения резания в этой точке. Плоскость резания Р п - коорди­натная плоскость, касательная к поверхности резания и прохо­дящая через главную режущую кромку резца. Главная секущая плоскость Р т - координатная плоскость, перпендикулярная линии пересечения основной плоскости и плоскости резания. Рабочая плоскость Р„- плоскость, в которой расположены на­правления скоростей движения резания и движения подачи.


резца в статике

Исходя из условий, что ось резца перпендикулярна линии центров станка, а вершина резца находится на этой линии, у то­карного резца различают главные и вспомогательные углы (рис. 21.6).

Передний угол у измеряют в главной секущей плоскости Р т между передней поверхностью А 1 и основной плоскостью Р„. Он оказывает большое влияние на процесс резания. С увеличе­нием у уменьшается работа, затрачиваемая на процесс резания, улучшаются условия схода стружки и повышается качество об­работанной поверхности. Но увеличение переднего угла приводит к снижению прочности резца и ускоренному его изнашиванию вследствие выкрашивания режущей кромки и уменьшения тепло- отвода. Различают углы положительные (+у), отрицательные (-у) и равные нулю. При обработке твердых и хрупких материалов применяют небольшие передние углы, мягких и вязких мате­риалов - углы увеличивают. При обработке закаленных сталей твердосплавным инструментом или при прерывистом резании для увеличения прочности лезвия назначают отрицательные углы у. В зависимости от механических свойств обрабатываемо­го материала, материала инструмента и режимов резания углы у назначают от -10° до +20°.

Задний угол а измеряют в главной секущей плоскости Р т между задней поверхностью А а и плоскостью резания Р п. Угол а предназначен для уменьшения трения между главной задней поверхностью и поверхностью резания. Большую роль при на­значении этого угла играют упругие свойства обрабатываемого материала. Увеличение угла а ведет к уменьшению прочности резца. При обработке вязких материалов назначают большие углы а, а при обработке твердых и хрупких материалов или при большом сечении срезаемого слоя назначают меньшие углы а. Угол а может находиться в пределах 6... 12°.

Главный угол в плане<р - угол между плоскостью резания Р п и рабочей плоскостьюP s .Он оказывает значительное влияние на шероховатость обработанной поверхности и продолжитель­ность работы резца до затупления. С уменьшением угла ср возрас­тают деформация заготовки и отжим резца, появляются вибра­ции, ухудшается качество обработанной поверхности. Чаще всего угол ф для токарных проходных резцов берется равным 45°, но в зависимости от конкретных условий (прежде всего от жестко­
сти детали) он может уменьшаться до 30° или увеличиваться до 90° (при обработке длинных и тонких валов).

Вспомогательный угол в плане(pj - угол между проекцией вспомогательной режущей кромки на основную плоскость и ра­бочей плоскостью Р.. Угол

Угол заострения р измеряют в главной секущей плоско­стиP t ,это угол между передней и задней поверхностями резца. Между углами а, Р и у существует зависимость а+Р + у = 90°. При (а+Р)<90° угол у считают положительным, при (а+р)>90° - отрицательным.

Угол при вершине е измеряют в основной плоскости Р„ меж­ду проекциями главной и вспомогательной режущих кромок на основную плоскость Р„.

Угол наклона главной режущей кромки X измеряют в плос­кости резания Р„, это угол между режущей кромкой и основной плоскостью Р„.

Угол X может быть отрицательным (вершина является выс­шей точкой лезвия), равным нулю (режущее лезвие параллель­но основной плоскости) и положительным (вершина является низшей точкой режущего лезвия). Он определяет направление схода стружки. Если X = 0, стружка сходит в направлении глав­ной секущей плоскости перпендикулярно главной режущей кромке. При X < 0 стружка сходит к обрабатываемой поверх­ности. При X > 0 стружка сходит к обработанной поверхности. При чистовой обработке принимать угол X положительным не рекомендуется, так как стружка может наматываться на заго­товку и царапать обработанную поверхность. Поэтому при чис­товой обработке угол X назначают отрицательным (до -5°). При черновой обработке, когда нагрузка на резец большая и качество обработанной поверхности не имеет большого значения, угол X положителен (до +5°).



На рис. 21.7, г показано изменение углов в плане <р и ф г в за­висимости от положения оси резца относительно линии центров станка. При отклонении оси резца от перпендикуляра к линии центров углы в плане будут отличаться от расчетных. Таким об­разом, установка резца на станке должна соответствовать рас­четным значениям его углов.