Киберне́тика - наука об общих закономерностях процессов управления и передачи информации в различных системах, будь то машины, живые организмы или общество.

Термин «кибернетика» изначально ввел в научный оборот Ампер, который в своем фундаментальном труде «Опыт о философии наук» (1834-1843) определил кибернетику как науку об управлении государством, которая должна обеспечить гражданам разнообразные блага. А в современном понимании - как наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе, впервые был предложен Норбертом Винером в 1948 году.

Она включает изучение обратной связи, чёрных ящиков и производных концептов, таких как управление и коммуникация в живых организмах, машинах и организациях, включая самоорганизации. Она фокусирует внимание на том, как что-либо (цифровое, механическое или биологическое) обрабатывает информацию, реагирует на неё и изменяется или может быть изменено, для того чтобы лучше выполнять первые две задачи. Стаффорд Бир назвал её наукой эффективной организации, а Гордон Паск расширил определение, включив потоки информации «из любых источников», начиная со звёзд и заканчивая мозгом.

Пример кибернетического мышления. С одной стороны, компания рассматривается в качестве системы в окружающей среде. С другой стороны, кибернетическое управление может быть представлено как система.

Более философское определение кибернетики, предложенное в 1956 году Л. Куффиньялем (англ.), одним из пионеров кибернетики, описывает кибернетику как «искусство обеспечения эффективности действия». Новое определение было предложено Льюисом Кауфманом (англ.): «Кибернетика - исследование систем и процессов, которые взаимодействуют сами с собой и воспроизводят себя».

Кибернетические методы применяются при исследовании случая, когда действие системы в окружающей среде вызывает некоторое изменение в окружающей среде, а это изменение проявляется на системе через обратную связь, что вызывает изменения в способе поведения системы. В исследовании этих «петель обратной связи» и заключаются методы кибернетики.

Современная кибернетика зарождалась как междисциплинарные исследования, объединяя области систем управления, теории электрических цепей, машиностроения, математического моделирования, математической логики, эволюционной биологии, неврологии, антропологии. Эти исследования появились в 1940 году, в основном, в трудах учёных на т. н. конференциях Мэйси (англ.).

Другие области исследований, повлиявшие на развитие кибернетики или оказавшиеся под её влиянием, - теория управления, теория игр, теория систем (математический эквивалент кибернетики), психология (особенно нейропсихология, бихевиоризм, познавательная психология) и философия.

Сфера кибернетики

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем - автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики - ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах - с прогрессом электронной вычислительной техники.

Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:

    Теория передачи сигналов

    Теория управления

    Теория автоматов

    Теория принятия решений

    Синергетика

    Теория алгоритмов

    Распознавание образов

    Теория оптимального управления

    Теория обучающихся систем

Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.

Особенно велика роль кибернетики в психологии труда и таких ее отраслях, как инженерная психология и психология профессионально-технического образования. Кибернетика - наука об оптимальном управлении сложными динамическими системами, изучающая общие принципы управления и связи, лежащие в основе работы самых разнообразных по природе систем - от самонаводящих ракет-снарядов и быстродействующих вычислительных машин до сложного живого организма. Управление - это перевод управляемой системы из одного состояния в другое посредством целенаправленного воздействия управляющего. Оптимальное управление - это перевод системы в новое состояние с выполнением некоторого критерия оптимальности, например, минимизации затрат времени, труда, веществ или энергии. Сложная динамическая система - это любой реальный объект, элементы которого изучаются в такой высокой степени взаимосвязи и подвижности, что изменение одного элемента приводит к изменению других.

План

Заключение

Введение

Кибернетика - наука об общих закономерностях процессов управления и передачи информации в технических, биологических и социальных системах. Она является одной из самых молодых и важных для современного человечества наук. Её основателем является американский математик Норберт Винер (1894-1964), выпустивший в 1948 году книгу «Кибернетика, или управление их связь в животном и машине». Своё название новая наука получила от древнегреческого слова «кибернетес», что в переводе означает «управляющий», «рулевой», «кормчий». Она возникла на стыке математики, теории информации, техники и нейрофизиологии, ее интересовал широкий класс, как живых, так и неживых систем.

Место кибернетики в современной науке можно определить внутри математики, аппаратом которой кибернетики пользуются для описания процессов регуляции. Н. Винер, создавая свою первую книгу о кибернетике, использовал простые математические формулы и доступные примеры из природы для описания кибернетических законов. После того, как кибернетика была принята учёными мира и стала исследоваться независимо от автора, Н. Винер, на правах первооткрывателя новой области знания, начал писать о роли кибернетики в жизни общества, и более конкретно, о роли автоматов в судьбе человеческого рода.

Кибернетика довольно быстро породила дочернюю науку, информатику, нужда в которой возникла в результате неудержимого роста потребности экономики в вычислительных машинах и такого же роста мощности последних. Современное понятие информации, к которому также был причастен Н. Винер, вошло в повседневность. Современное использование законов кибернетики сугубо прагматично и утилитарно, но начинается оно с изучения и освоения законов, описанных ещё Н. Винером.

Кибернетика - это фундаментальный труд, который описывает главные понятия и принципы управления информации. Изучением процессов управления в природе, обществе и технике и занимается наука кибернетика.

1. Кибернетика как наука, основные понятия кибернетики

Кибернетика - наука об общих закономерностях процессов управления и передачи информации в технических, биологических и социальных системах. Термином «кибернетика» 2500 лет назад древнегреческий философ Платон называл «искусством управления кораблем». В начале XIX в. французский физик и математик А.М. Ампер называл кибернетику наукой об управлении государством. Кибернетика возникла в 40-х гг. XX в. в результате насущной практической потребности в повышении качества управления в производственно-технической, хозяйственной, политической, военной и других областях человеческой деятельности. Её основателем является американский математик Н. Винер (1894-1964), выпустивший в 1948 году книгу «Кибернетика, или управление их связь в животном и машине». Она возникла на стыке математики, теории информации, техники и нейрофизиологии, ее интересовал широкий класс, как живых, так и неживых систем. В Советском Союзе разработками в этой области занимались И. Полетаев, М. Цетлин, В. Глушков, А. Берг, И. Петровский и другие.

Со сложными системами управления человек имел дело задолго до кибернетики (управление людьми, машинами; наблюдал регуляционные процессы у живых организмов). Но кибернетика выделила общие закономерности управления в различных процессах и системах, а не их специфику. В «докибернетический» период знания об управлении и организации носили «локальный» характер, т. е. в отдельных областях. Так, еще в 1843 г. польский мыслитель Б. Трентовский опубликовал малоизвестную в настоящее время книгу «Отношении философии к кибернетике как искусству управления народом». В своей книге «Опыт философских наук» в 1834 году известный физик А.М. Ампер дал классификацию наук, среди которых третьей по счету стоит кибернетика - наука о текущей политике и практическом управлении государством (обществом).

В общую кибернетику обычно включают теорию информации, теорию алгоритмов, теорию игр и теорию автоматов, техническую кибернетику. В кибернетике можно выделить ряд научных направлений:

Теоретическая кибернетика занимается общими проблемами теории управления, теории информации, вопросами передачи, защиты, хранения и использования информации в системах управления. Многие проблемы теоретической кибернетики изучаются в теоретической информатике.

Техническая Кибернетика - отрасль науки, изучающая технические системы управления. Важнейшие направления исследований разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и комплексов для передачи, переработки и хранения информации.

Биологическая кибернетика применяет идеи и методы кибернетики в биологии и медицине. Особое место в этом направлении исследований играет нейрокибернетика, изучающая процессы переработки информации в нервной ткани животных и человека, а также бионика - наука о том, как находки живой природы, реализованные в живых организмах, можно переносить в искусственные системы, создаваемые человеком.

Гомеостатика - наука о достижении равновесных состояний - при наличии многих действующих одновременно факторов связывает модели биологической кибернетики и технической кибернетики. Кибернетику интересует равновесные состояния в таких системах и способы их достижения.

Экономическая кибернетика - изучает процессы управления, протекающие в экономике. Социальная кибернетика изучает процессы управления, протекающие в человеческом обществе. Это направление кибернетики тесно смыкается с социальной психологией.

К основным задачам кибернетики относятся: 1) установление фактов, общих для управляемых систем или для некоторых их совокупностей; 2) выявление ограничений, свойственных управляемым системам и установление их происхождения; 3) нахождение общих законов, которым подчиняются управляемые системы; 4) определение путей практического использования установленных фактов и найденных закономерностей.

Основные понятия кибернетики: управление, управляющая система, управляемая система, организация, обратная связь, алгоритм, модель, оптимизация, сигнал, «черный ящик» и др. Управление - это воздействие на объект, выбранное на основании имеющейся для этого информации из множества возможных воздействий, улучшающее его функционирование или развитие. У управляемых систем всегда существует некоторое множество возможных изменений, из которого производится выбор предпочтительного изменения. Если у системы нет выбора, то не может быть и речи об управлении.

Управление - это вызов изменений в системе или перевод системы из одного состояния в другое в соответствии с объективно существующей или выбранной целью. Управлять - это и предвидеть те изменения, которые произойдут в системе после подачи управляющего воздействия (сигнала, несущего информацию). Всякая система управления рассматривается как единство управляющей системы (субъекта управления) и управляемой системы - объекта управления. Управление системой или объектом всегда происходит в какой-то внешней среде. Поведение любой управляемой системы всегда изучается с учетом ее связей с окружающей средой. Поскольку все объекты, явления и процессы взаимосвязаны и влияют друг на друга, то, выделяя какой-либо объект, необходимо учитывать влияние среды на этот объект и наоборот. Свойством управляемости может обладать не любая система. Необходимым условием наличия в системе хотя бы потенциальных возможностей управления является ее организованность.

Чтобы управление могло функционировать, то есть целенаправленно изменять объект, оно должно содержать четыре необходимых элемента: 1. каналы сбора информации о состоянии среды и объекта; 2. канал воздействия на объект; 3. цель управления. 4. способ (алгоритм, правило) управления, указывающий, каким образом можно достичь поставленной цели, располагая информацией о состоянии среды и объекта.

В кибернетике впервые было сформулировано понятие «черного ящика» как устройство, по словам Н. Винера, «которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого не обязательно располагать информацией о структуре, обеспечивающей выполнение этой операции».

Понятие цели и целенаправленность. Основатель кибернетики Н. Винер писал, что «действие или поведение допускает истолкование как направленность на достижение некоторой цели, т. е. некоторого конечного состояния, при котором объект вступает в определенную связь в пространстве и во времени с некоторым другим объектом или событием».

Цель определяется как внешней средой, так и внутренними потребностями субъекта управления. Цель должна быть принципиально достижимой, она должна соответствовать реальной ситуации и возможностям системы (управляющей и управляемой). За счет управляющих воздействий управляемая система может целенаправленно изменять свое поведение. Целенаправленность управления биологических управляемых систем сформирована в процессе эволюционного развития живой природы. Она означает стремление организмов к их выживанию и размножению. Целенаправленность искусственных управляемых систем определяется их разработчиками и пользователями.

Понятие обратной связи. Управление по «принципу обратной связи». Принцип обратной связи характеризует информационную и пространственно-временную зависимость в кибернетической системе. В широком смысле понятие обратной связи, по словам Н. Винера, «означает, что часть выходной энергии аппарата или машины возвращается как вход. В узком смысле для обозначения того, что поведение объекта управляется величиной ошибки в положении объекта по отношению к некоторой специфической цели. В этом случае обратная связь отрицательна, т.е. сигналы от цели используются для ограничения выходов, которые в противном случае шли бы дальше цели». Если поведение системы усиливает внешнее воздействие, то имеем дело с положительной обратной связью, а если уменьшает, - то с отрицательной обратной связью. Особый случай - гомеостатические обратные связи, которые сводят внешнее воздействие к нулю (например, температура тела человека, которая остается постоянной благодаря гомеостатическим обратным связям). Понятие обратной связи имеет отношение к цели управления. Поведение объекта управляется величиной ошибки в положении объекта по отношению к стоящей цели.

Понятие информации. Управление - информационный процесс. Информация - «пища», «ресурс» управления. Поэтому кибернетика есть вместе с тем наука, об информации, об информационных системах и процессах. «Информация» связана со сведениями, сообщениями и их передачей. Бурное развитие в нашем веке телефона, телеграфа, радио, телевидения и других средств массовой коммуникации потребовало повышения эффективности процессов передачи, хранения и переработки передаваемых сообщении информации. «Докибернетическое» понятие информации связано с совокупностью сведений, данных и знаний. Оно стало явно непонятным, неопределенным с возникновением кибернетики. Понятие информации в кибернетике уточняется в математических «теориях информации». Это теории статистической, комбинаторной, топологической, семантической информации.

В отечественной и зарубежной литературе предлагается много разных концепций (определений) информации: информация как отраженное разнообразие; информация как устранение неопределенности (энтропии); информация как связь между управляющей и управляемой системами; информация как преобразование сообщений; информация как единство содержания и формы (например, мысль - содержание, а само слово, звук - форма); информация - это мера упорядоченности, организации системы в ее связях с окружающей средой.

Общее понятие информации должно непротиворечиво охватывать все определения информация, все виды информации. Такого универсального понятия информации еще не разработано. Информация может быть структурной, застывшей, окостенелой. Например, в минералах, машинах, приборах, автоматических линиях. Любая машина - это овеществленная научная и техническая информация, разум общества, ставший предметом. Информация может быть также функциональной, «актуальным управлением». Информация измеримая величина. Она измеряется в битах.

Основные свойства информации: 1) способность управлять физическими, химическими, биологическими и социальными процессами. Там, где есть информация, действует управление, а там, где осуществляется управление, непременно присутствует и информация; 2) способность передаваться на расстоянии (при перемещении инфоносителя); 3) способность информации подвергаться переработке; 4) способность сохраняться в течение любых промежутков времени и изменяться во времени; 5) способность переходить из пассивной формы в активную. Например, когда извлекается из «памяти» для построения тех или иных структур (синтез белка, создание текста на компьютере).

Информация существенно влияет на ускоренное развитие науки систем управления, техники и различных отраслей народного хозяйства. Политика, политическое управление, экономика - это концентрированная смысловая информация, т. е. такая, которая перерабатывается человеческим сознанием и реализуется в различных социальных сферах. Она обусловлена политическими, экономическими потребностями общества и циркулирует в процессе управления производством и обществом. Социальная информация играет огромную роль в обеспечении правопорядка, работы правоохранительных органов, в деле образования и воспитания подрастающих поколений. Информация - первооснова мира, всего сущего. Современным научным обобщением всех информационных процессов в природе и обществе явилась информациология - генерализованная наука о природе информации и законах информации.

Понятие самоорганизации. В современную науку это понятие вошло через идеи кибернетики. Процесс самоорганизации систем обусловлен таким неэнтропийным процессом, как управление. Энтропия - мера неорганизованности, хаоса. Энтропия и информация, как правило, рассматриваются совместно. Информация - это то, что устраняет неопределенность, количество «снятой» неопределенности. Тенденция к определенности, к повышению информативности - процесс негэнтропийный (процесс с обратным знаком).

Термин «самоорганизующаяся система» ввел кибернетик У. Р. Эшби для описания кибернетических систем. Для самоорганизующихся систем характерны: 1) способность активно взаимодействовать со средой, изменять ее в направлении, обеспечивающим более успешное функционирование системы; 2) наличие определенной гибкости структуры или адаптивного механизма, выработанного в ходе эволюции; 3) непредсказуемость поведения самоорганизующихся систем; 4) способность учитывать прошлый опыт или возможность научения. Одним из первых объектов, к которым были применены принципы самоорганизации, был головной мозг.

Использование понятий и идей кибернетики в вопросах физики, химии, биологии, социологии, психологии и других науках дали превосходные всходы, позволили глубоко продвинуться в сущность процессов, протекающих в неживой и живой природе.

2. Кибернетика в научной картине мира

Кибернетика устранила принципиально неполную научную картину мира, которая была присуща науке XIX и первой половине XX века. Классическая и неклассическая наука строила представление о мире на двух фундаментальных постулатах - материя и энергия. Создавала вещественно- энергетическую, вещественно- полевую картину мира.

На постулатах о материи и энергии строились представления о пространстве и времени. Но в палитре научной картины мира не хватала важнейшей «краски» - информации. Самая глубокая причина сопряжения пространства и времени, а равно всех изменений в мире проистекает из изменения массы, энергии и информации. Опыт развития науки последнего времени показал, что реальный мир состоит из этих предельно фундаментальных элементов - системы материальных объектов, вещественно-энергетические процессы являются и носителями, хранителями и потребителями информации.

Кибернетика (вместе с теорией информации) дала новое представление о мире, основанное на информации, управлении, организованности, обратной связи, целенаправленности. Создала информационную картину мира. Не энергия, а информация выйдет в XXI столетии на первое место в мире научных понятий.

Фундаментальный характер информации означает, что хаос не может быть абсолютным. В любом хаосе существует некоторый уровень упорядоченности. Космос не способен опуститься до сплошной энтропии. Живые организмы и социальные системы питаются отрицательной энтропией (негэнтропией), то есть они противостоят беспорядку и хаосу. Масс-энерго-информационные преобразования исчерпывают собой все возможные состояния Космоса, а равно его подсистем, включая человека, общество.

Кибернетика оказала революционизирующее влияние на теоретическое содержание и методологию всех наук. Она устранила непреодолимые грани между естественными, общественными и техническими науками. Способствовала синтезу научных знаний, создала из понятий частных наук структуры новых понятий, новый язык науки. Такие понятия, как информация, управление, обратная связь, система, модель, алгоритм и др. обрели общенаучный статус.

Кибернетика дала в руки человека сильнейшее оружие управления производством, обществом, инструмент усиления интеллектуальных способностей человека (ЭВМ). Современные ЭВМ (компьютеры) - универсальные преобразователи информации, а с преобразованием информации человек связан во всех областях своей деятельности (в политике, экономике, науке, профессиональной сфере и др.).

На мир уже нельзя смотреть «докибернетическим взглядом». Новая наука - кибернетика - сформировала свой взгляд на мир информационно-кибернетический стиль мышления.

3. Основные принципы и законы кибернетики

Из кибернетики управление заимствует следующие законы и принципы необходимого разнообразия, эмерджентности, внешнего дополнения, обратной связи, выбора решения, декомпозиции, а также иерархии управления и автоматического регулирования (саморегулирования).

Закон необходимого разнообразия. По определению У.Р. Эшби, первый фундаментальный закон кибернетики заключается в том, что разнообразие сложной системы требует управления, которое само обладает некоторым разнообразием. Иначе говоря, значительное разнообразие воздействующих на большую и сложную систему возмущений требует адекватного им разнообразия её возможных состояний. Если же такая адекватность в системе отсутствует, то это является следствием нарушения принципа целостности составляющих её частей (подсистем), а именно - недостаточного разнообразия элементов в организационном построении (структуре) частей.

Ограничение разнообразия в поведении управляемого объекта достигается только за счет увеличения разнообразия органа управления (управленческих команд). Чтобы достигнуть минимума разнообразия выходных реакций (результатов деятельности) системы, управляющий орган должен быть способен к выработке определенного минимума команд и сигналов. Если его мощность ниже минимума, он не способен обеспечить полное управление.

Процесс управления, в конечном счете, сводится к уменьшению разнообразия состояний управляемой системы, к уменьшению её неопределенности. В соответствии с этим законом, с увеличением сложности управляемой системы сложность управляемого блока также должна повышаться. Поэтому все большее усложнение аппарата управления корпорациями, холдингами, финансово-промышленными группами, и т. п. организациями и их частями в современных условиях - это закономерный процесс. Другое дело, что восполнять разнообразие управляющей системы нужно за счет внедрения компьютерных и других прогрессивных технологий управления и математических методов, а не за счет привлечения дополнительных людских ресурсов.

Закон необходимого разнообразия имеет принципиальное значение для разработки оптимальной структуры системы управления. Если центральный орган управления при сохранении разумных размеров не обладает необходимым разнообразием, то следует развивать иерархическую структуру, передавая принятие определенных решений на нижние уровни и не допуская, чтобы они превращались в передаточные инстанции.

Неудовлетворительные результаты проводимой в стране экономической реформы объясняются неадекватной реакцией органов управления. В стране увеличивается разнообразие форм собственности, разновидностей структурных формирований объектов управления, моделей хозяйствования. В соответствии с этими изменениями необходимо систему управления таким развитием привести в соответствие с законом необходимого разнообразия (обеспечить льготное кредитование структурных преобразований, разумное налогообложение развивающихся предприятий, государственную политику подготовки и переподготовки кадров).

С позиции теории управления главнейшим моментом, характеризующим сложность системы, является её разнообразие. Поэтому определение степени оптимального разнообразия при разработке любых систем - организации производства, планирования, обслуживания, оперативного управления, систем оплаты труда и т. д. - является одним из наиболее важных и первоочередных этапов использования кибернетики при проектировании и функционировании организации.

Таким образом, соблюдение закона необходимого и достаточного разнообразия в проектировании и функционировании организационных систем повышает их эффективность и наоборот.

Принцип эмерджентности. Второй принцип У. Э. Эшби, выражает следующее важное свойство сложной системы: «Чем больше система и чем больше различия в размерах между частью и целым, тем выше вероятность того, что свойства целого могут сильно отличаться от свойств частей». Указанные различия возникают в результате объединения в структуре системы (частей) определенного числа однородных или разнородных частей (элементов). Этот принцип указывает на возможность несовпадения локальных целей (частных целей отдельных элементов системы) с глобальной (общей) целью системы, а отсюда - на необходимость для достижения глобальных результатов принимать решения и вести разработки по совершенствованию системы и её частей на основе не только анализа, но и синтеза. Так, например, при построении дерева целей необходимо помнить о том, что система будет более эффективно функционировать в том случае, если достижение частных целей (например, работников фирмы) способствует достижению глобального (общего) оптимума системы (фирмы в целом).

Принцип внешнего дополнения. Впервые сформулированный С.Т. Биром третий принцип кибернетики гласит: любая система управления нуждается в «черном ящике» - определенных резервах, с помощью которых компенсируются неучтенные воздействия внешней и внутренней среды. Степень реализации этого принципа и определяет качество функционирования управляющей подсистемы. Действительно, в любом, даже самом детальном и тщательно разработанном плане нельзя учесть все многочисленные факторы, воздействующие на управляемую подсистему в процессе его реализации. Например, это может проявляться в недостаточной разработке каких-либо плановых показателей, в неполном учете при планировании и управлении всех факторов развития того или иного производства, в недостаточно качественном уровне информации, циркулирующей в системе.

Закон обратной связи. Четвертый принцип кибернетики возведен в ранг фундаментального закона, который известен как закон обратной связи. Без наличия обратной связи между взаимосвязанными и взаимодействующими элементами, частями или системами невозможна организация эффективного управления ими на научных принципах. Все организованные системы являются открытыми, и замкнутость их обеспечивается только через контур прямой и обратной связи. Необходимым условием их эффективного функционирования является наличие обратной связи, сигнализирующей о достигнутом результате. На основании этой информации корректируется управляющее воздействие. Входная величина действует на управляемый процесс и в соответствии с передаточной функцией, характерной для данного объекта и определяющей соотношение между входными и выходными сигналами, превращаются в выходную величину.

Первый принцип кибернетики. Кибернетика рассматривает все многообразие видов материи как систему систем. Любая система является частью другой более сложной системы или ее подсистемой. Система рассматривается как изменяющаяся во времени и пространстве: системы могут создаваться, развиваться, действовать, разрушаться и отмирать. В то же время кибернетика рассматривает систему не как сумму ее составных частей (подсистем), а как целое, качественно отличающееся от входящих в нее компонентов.

Второй принцип кибернетики. Любая система в зависимости от того, изучена она или нет, может рассматриваться как состоящая из управляющего объекта, управляемого объекта и канала связи между ними -- если структура системы известна или как «черный ящик», имеющий вход и выход -- если внутренняя структура системы неизвестна.

Схема функционирования системы основана на том, что управляющий объект получает по каналу связи информацию о состоянии управляемого объекта или о некоторых его параметрах, сравнивает их с заданными, вырабатывает по определенному алгоритму управляющую информацию и по каналу связи передает ее управляемому объекту. Управляемый объект в соответствии с полученной информацией изменяет свое состояние (или состояние некоторых своих параметров). После чего цикл повторяется. Эту схему можно формализовать, т.е. описать системой уравнений.

Функции системы можно определить по ее реакции на выходе при внешнем воздействии на входе. Путем длительных экспериментов можно накопить статистический материал, с помощью которого будет возможно прогнозировать и моделировать поведение системы. При этом следует учитывать, что с точки зрения кибернетики анализ составных частей системы не раскрывает структуру системы в целом, поэтому при изучении систем в первую очередь должны быть исследованы взаимодействие подсистем и связи между ними.

Третий принцип кибернетики. Информация рассматривается кибернетикой как средство управления. Для того чтобы управлять объектом, необходимо иметь связь между управляемым и управляющим объектами (обратную связь), источник информации и саму информацию. Обратная связь используется как средство, обеспечивающее динамическое соответствие получаемых на выходе системы результатов поставленной цели.

Четвертый принцип кибернетики. Состояние любой системы характеризуется значениями определенных параметров самой системы или ее элементов. Воздействуя на систему или отдельные ее элементы, можно переводить систему из одного состояния в другое, т. е. управлять системой. Предметом изучения кибернетики является поиск необходимых воздействий на систему или ее элементы для перевода системы в заданное состояние.

Пятый принцип кибернетики. Кибернетика утверждает, что всегда существует возможность найти и поддержать такие значения управляющих воздействий на систему, которые приводят систему в экстремальное состояние по заданному критерию, т. е. всегда существует принципиальная возможность оптимального управления системой, если система достаточно изучена и известны критерии оптимизации и ограничения, накладываемые на входные и выходные параметры ее.

Назначение системы - выполнение определенных функций; цель оптимального управления - поддержание системы в заданном экстремальном состоянии при минимальных затратах.

Роль кибернетики как научного направления определяется теми возможностями, которые представляет кибернетика для оптимизации управления народным хозяйством.

Научный и технический арсенал кибернетики очень богат, он включает целый ряд разделов математики, в том числе теорию массового обслуживания, математическую логику, линейное и динамическое программирование, вычислительную математику, теорию вероятностей, математическое моделирование и др., а также исследование операций, теорию игр, теорию автоматического управления, общую теорию систем, машинное моделирование, электронно-вычислительную технику, теорию информации.

Располагая такими мощными средствами, кибернетика находит прикладное применение практически во всех сферах человеческой деятельности. Уже на современном (начальном) этапе методы и средства кибернетики широко применяются в науке, производстве, в экономике, на транспорте, предприятиях связи, в сельском хозяйстве, медицине, военном деле. Особенно широкое распространение получили методы и средства кибернетики в форме автоматизированных систем управления технологическими процессами, предприятиями, объединениями и отраслями, базирующихся на использовании электронных вычислительных машин (ЭВМ) и устройств передачи данных. Вместе с тем нельзя не отметить, что для развития науки и практики управления производством недостаточно владеть средствами кибернетики. Особенности современного производства, вовлечение в него больших коллективов людей требуют глубокого изучения экономических, социологических, психологических, юридических и других аспектов управления.

Заключение

Кибернетика изучает процессы получения и передачи, накопления и преобразования, переработки и использования информации в машинах, живых организмах и их объединениях. Установление связи между управлением и информационными процессами - важнейшее достижение кибернетики. Оно позволяет понять технологию процесса управления и, главное, подвергнуть его изучению количественными методами.

Отличительная черта кибернетического подхода к познанию и совершенствованию процессов управления - использование их аналогов в живой и неживой природе и моделирование. Основная задача кибернетики - достижение на основе присущих ей методов и средств оптимального уровня управления, т.е. принятие наилучших управленческих решений. Иными словами, кибернетическим называется такое управление, которое: - рассматривает организацию как некоторую большую систему, каждый элемент которой берется не только сам по себе, но и как часть большой совокупности, в которую он входит; обеспечивает оптимальное решение многовариантных динамических задач организации; использует специфические методы, выдвинутые кибернетикой (обратную связь, саморегулирование и самоорганизацию); широко применяет механизацию и автоматизацию управленческих работ на основе использования вычислительной и управляющей техники и компьютерных технологий.

Кибернетика находит прикладное применение практически во всех сферах человеческой деятельности. Уже на современном (начальном) этапе методы и средства кибернетики широко применяются в науке, производстве, в экономике, на транспорте, предприятиях связи, в сельском хозяйстве, медицине, военном деле.

Таким образом, кибернетику можно определить как науку об управлении и связи с живой природой в обществе и технике.

Список использованной литературы

1. Горелов А.А. Концепции современного естествознания: учеб. пособие для студентов высших учебных заведений. - М.: Гуманит. изд. центр ВЛАДОС, 2006. - 512 с.

2. Концепции современного естествознания: учебное пособие / под ред. С.И.Самыгина. - 5-е изд., перераб. и доп. - Ростов на Дону: Феникс, 2004. - 448 с.

3. Найдыш В.М. Концепции современного естествознания: учебник. - 2-е изд., перераб. и доп. - М.: Альфа - М, Инфра - М, 2006. - 622 с.

4. Рузавин Г.И. Концепции современного естествознания: учебник для вузов. - М.: Культура и спорт, ЮНИТИ, 2006. - 287 с.

5. Солопов Е.Ф. Концепции современного естествознания: учеб. пособие для студентов высших учебных заведений, обучающихся по гуманитарным специальностям / Е.Ф. Солопов. - М.: Гуманитар. изд. центр ВЛАДОС, 2006. - 232 с.

Кибернетика (в переводе с греческого искусство управления) - это наука об управлении сложными системами с обратной связью. Она возникла на стыке математики, техники и нейрофизиологии, и ее интересовал целый класс систем, как живых, так и не живых, в которых существовал механизм обратной связи. Основателем кибернетики по праву считается американский математик Н. Винер (1894- 1964), выпустивший в 1948 году книгу, которая так и называлась «Кибернетика».

Оригинальность этой науки заключается в том, что она изучает не вещественный состав систем и не их структуру, а результат работы данного класса систем. В кибернетике впервые было сформулировано понятие «черного ящика» как устройства, которое выполняет определенную операцию над настоящим и прошлым входного потенциала, но для которого мы не обязательно располагаем информацией о структуре, обеспечивающей выполнение этой операции.

Системы изучаются в кибернетике по их реакциям на внешние воздействия, другими словами, по тем функциям, которые они выполняют. Наряду с вещественным и структурным подходом, кибернетика ввела в научный обиход функциональный подход как еще один вариант системного подхода в широком смысле слова.

Если 17-ое столетие и начало 18-ого столетия - век паровых машин, то настоящее время есть век связи и управления. В изучение этих процессов кибернетика внесла значительный вклад. Она изучает способы связи и модели управления, и в этом исследовании ей понадобилось еще одно понятие, которое было давно известным, но впервые получило фундаментальный статус в естествознании - понятие информации (с латинского ознакомление) как меры организованности системы в противоположность понятию энтропии как меры неорганизованности.

Чтобы яснее стало значение информации, рассмотрим деятельность идеального существа, получившего название «демон Максвелла». Идею такого существа, нарушающего второе начало термодинамики, Максвелл изложил в «Теории теплоты» вышедшей в 1871 году. «Когда частица со скоростью выше средней подходит к дверце из отделения А или частица со скоростью ниже средней подходит к дверце из отделения В, привратник открывает дверцу и частица проходит через отверстие; когда же частица со скоростью ниже средней подходит из отделения А или частица со скоростью выше средней подходит из отделения В дверца закрывается. Таким образом, в отделении А их концентрация уменьшается. Это вызывает очевидное уменьшение энтропии, и если соединить оба отделения тепловым двигателем, мы, как будто, получим вечный двигатель второго рода».

Кибернетика выявляет зависимости между информацией и другими характеристиками систем. Работа «демона Максвелла» позволяет установить обратно пропорциональную зависимость между информацией и энтропией. С повышением энтропии уменьшается информации и наоборот, понижение энтропии увеличивает информацию. Связь информации с энтропией свидетельствует и о связи информации с энергией.

Энергия (от греческого energeia - деятельность) характеризует общую меру различных видов движения и взаимодействия в формах: механической, тепловой, электромагнитной, химической, гравитационной, ядерной. Точность сигнала, передающего информацию, не зависит от количества энергии, которая используется для передачи сигнала. Тем не менее, энергия и информация связаны между собой. Винер приводит такой пример: «Кровь, оттекающая от мозга, на долю градуса теплее, чем кровь, притекающая к нему».

Общее значение кибернетики обозначается в следующих направлениях:

Философское значение, поскольку кибернетика дает новое представление о мире, основанное на роли связи, управления, информации, организованности, обратной связи и вероятности.

Социальное значение, поскольку кибернетика дает новое представление об обществе, как организованном целом. О пользе кибернетики для изучения общества не мало было сказано уже в момент возникновения этой науки.

Общенаучное значение в трех смыслах: во-первых, потому что кибернетика дает общенаучные понятия, которые оказываются важными в других областях науки - понятия управления, сложно динамической системы и тому подобное; во-вторых, потому что дает науке новые методы исследования: вероятностные, стохастические, моделирования на ЭВМ и так далее; в-третьих, потому что на основе функционального подхода «сигнал-отклик» кибернетика формирует гипотезы о внутреннем составе и строении систем, которые затем могут быть проверены в процессе содержательного исследования.

Методологическое значение кибернетики определяется тем, что изучение функционирования более простых технических систем используется для выдвижения гипотез о механизме работы качественно более сложных систем с целью познания происходящих в них процессов - воспроизводства жизни, обучения и так далее.

Наиболее известно техническое значение кибернетики - создание на основе кибернетических принципов ЭВМ, роботов, ПЭВМ, породившее тенденцию кибернетизации и информатизации не только научного познания, но и всех сфер жизни.

Существует большое количество различных определений понятия «кибернетика», однако все они в конечном счете сводятся к тому, что кибернетика - это наука, изучающая общие закономерности строения сложных систем управления и протекания в них процессов управления. А так как любые процессы управления связаны с принятием решений на основе получаемой информации, то кибернетику часто определяют еще и как науку об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах.

Появление кибернетики как самостоятельного научного направления относят к 1948 г., когда американский ученый, профессор математики Массачусетского технологического института Норберт Винер (1894- 1964 гг.) опубликовал книгу «Кибернетика, или управление и связь в животном и машине». В этой книге Винер обобщил закономерности, относящиеся к системам управления различной природы - биологическим, техническим и социальным. Во­просы управления в социальных системах были более подробно рассмотрены им в книге «Кибернетика и общество», опубликованной в 1954 г.

Название «кибернетика» происходит от греческого «кюбернетес», что первоначально означало «рулевой», «кормчий», но впоследствии стало обозначать и «правитель над людьми». Так, древнегреческий философ Платон в своих сочинениях в одних случаях называет кибернетикой искусство управления кораблем или колесницей, а в других - искусство править людьми. Примечательно, что римлянами слово «кюбернетес» было преобразовано в «губернатор».

Известный французский ученый-физик А.М. Ампер (1775- 1836 гг.) в своей работе «Опыт о философии наук, или Аналитическое изложение естественной классификации всех человеческих знаний», первая часть которой вышла в 1834 г., назвал кибернетикой науку о текущем управлении государством (народом), которая помогает правительству решать встающие перед ним конкретные задачи с учетом разнообразных обстоятельств в свете общей задачи принести стране мир и процветание.

Однако вскоре термин «кибернетика» был забыт и, как отмечалось ранее, возрожден в 1948 г. Винером в качестве названия науки об управлении техническими, биологическими и социальными системами.

Становление и успешное развитие любого научного направления связаны, с одной стороны, с накоплением достаточного количества знаний, на базе которых может развиваться данная наука, и, с другой - с потребностями общества в ее развитии. Поэтому не случайно, что размышления о кибернетике Платона и Ампера не получили в свое время дальнейшего развития и были в сущности забыты. Достаточно солидная научная база для становления кибернетики создавалась лишь в течение XIX- XX веков, а технологическая база непосредственно связана с развитием электроники за период последних 50- 60 лет.

Социальная потребность в развитии кибернетики на современной ступени общественного развития определяется прежде всего бурным ростом технологического уровня производства, в результате чего доля суммарных физических усилий человека и животных составляет в настоящее время менее 1% мирового энергетического баланса. Снижение данной величины обусловлено стремительным ростом энерговооруженности работников физического труда, сопровождающимся и значительным повышением его производительности. Вместе с тем так как управление современной техникой требует все больших затрат нервной энергии, а психофизические возможности человека ограничены, то оказывается, что именно они. В значительной степени ограничивали полноценное использование достижений технического прогресса.

С другой стороны, в развитых странах доля работников умственного труда по отношению ко всем работающим приближается уже к 50%, причем дальнейшее возрастание ее является объективным законом общественного развития. А производительность умственного труда, в процессе которого до недавнего времени использовались лишь самые примитивные технические средства повышения его эффективности (арифмометры, конторские счеты, ло­гарифмические линейки, пишущие машинки), практически оставалась на уровне прошлого века.

Если учитывать также непрерывное возрастание сложности технологических процессов, характеризующихся большим количеством разнообразных показателей, то становится ясным, что отсутствие механизации информационных процессов тормозит дальнейшее развитие научно-технического прогресса. Перечисленные факторы в совокупности и обусловили быстрое развитие кибернетики и ее технической базы - кибернетической техники.

Кибернетика - молодое направление в науке, появившееся в середине XX века. Несмотря на свой возраст, с развитием информационных технологий оно стало одним из самых перспективных и востребованных. Сегодня методы этой дисциплины применяются в экономике, социологии и других сферах. Кто был в рядах основателей этой науки, кому современное обязано ее появлением и развитием?

Вконтакте

Немного истории

Термин «кибернетика » в научный оборот ввел французский физик Ампер в 30-х годах XIX века. Согласно определению Ампера, она является об эффективном управлении государством, главная цель которого - обеспечение потребностей его жителей.

Кибернетика как наука зародилась в 1940-е. Она объединила теоретические знания и исследования из нескольких областей:

  • машиностроения;
  • систем управления;
  • логического моделирования;
  • теории электрических цепей;
  • неврологии.

Несмотря на то, что первым определение дал Ампер, он не тот, кто заложил основы кибернетики. Основателем научного течения считается , ученый из . История кибернетики в современном понимании началась в 1948 году, когда была издана работа Винера под одноименным названием, ставшая фундаментом для нового направления в науке.

Вычислительные машины середины XX века отличались низким быстродействием. Норберт Винер, в сферу интересов и исследований которого входили эти машины, сформировал в своем труде общий список требований к ним.

Ученый довольно точно спрогнозировал, как будет развиваться вычислительная техника . В частности, основоположником кибернетики был предсказан переход от десятичной системы к двоичной в вычислительных устройствах.

Он считал это необходимым шагом для увеличения быстродействия ЭВМ, так как двоичная система является более экономичной. Также Норберт Винер настаивал на том, что машины должны быть способны к самообучению и, как следствие, к самостоятельному исправлению допущенных ошибок.

Помимо работы Винера, базовыми для нового научного направления стали труды Уильяма Росса Эшби , Уоррена Мак-Каллока и Уильяма Уолтера. Эти ученые наравне с Винером были теми, кто заложил основы кибернетики.

Современное понимание науки

Впервые термин «кибернетика» в научном контексте был использован в трудах древнегреческих ученых. Под этим словом они понимали искусство чиновника, управляющего городом. Однако ни это определение, ни определение Андре-Мари Ампера , упомянутое выше, не отражает современные представления о ней. В XX веке термин был переосмыслен учеными, поспособствовавшими становлению нового научного направления. Например, Луи Куффиньяль называл ее искусством обеспечения эффективности действия, а Стаффорд Вир - наукой о правильном управлении в какой-либо совокупности.

Важно! Ученые до сих пор спорят о том, что такое кибернетика. Среди них нет согласия в том, какое определение их науки - наиболее правильное и точное. Самым известным является вариант, предложенный Норбертом Винером.

Согласно Винеру, это наука, которая занимается изучением общих закономерностей работы с информацией в сложных системах управления. Она рассматривает четыре основные операции с информацией:

  • получение;
  • передача;
  • хранение;
  • модификация.

Кибернетика как наука , зародившаяся на стыке междисциплинарных исследований, нашла обширное применение и в точных видах познания, и в социальной сфере.

Объекты изучения

Эта наука изучает всевозможные управляемые системы , используя понятия кибернетической системы и кибернетического подхода.

Кибернетический подход

Кибернетический подход состоит в замене исходной системы управления изоморфной моделью и дальнейшем изучении этой модели. Чтобы реализовать подход, применяется один из двух методов моделирования: компьютерное или имитационное. Оба метода подразумевают использование принципа «черного ящика». Экспериментатор моделирует внешнюю деятельность рассматриваемой системы , а ее структура, воспроизводящая поведенческие характеристики, остается скрытой.

Кибернетический подход позволяет исследовать несколько видов информационных моделей, отличающихся по запросам:

  • ответная реакция системы на воздействие внешних факторов;
  • оптимизация характеристик системы относительно функции ценности;
  • адаптивное управление;
  • прогноз динамики системного преобразования.

Кибернетическая система

Кибернетическая система представляет собой множество взаимосвязанных элементов, способных к приему, обработке, запоминанию и обмену информацией . Основные свойства подобных систем: адаптация, самоорганизация и самообучение с использованием накопленного опыта.

Кибернетика в целом рассматривает любые управляемые системы в абстрактной форме, не учитывая их материальную природу, поэтому системой может являться как вычислительная машина, так и общество либо его отдельные группы.

Направления

Кибернетические методы применяются во многих отраслях:

  • Биология. В рамках биологической ветви этой науки исследуются кибернетические системы в организмах . Также ученые решают вопросы передачи генной информации между поколениями живых организмов. В широком смысле биологическая кибернетика занимается исследованием методов моделирования структур и поведения биологических систем.
  • Медицина. Кибернетика в медицине помогает диагностировать заболевания при помощи вычислительной техники и используется для создания высокотехнологичных протезов.
  • . Методы данной науки используют для анализа всей экономики и отдельных ее элементов как сложной системы при помощи экономико-математического моделирования.
  • Инженерия. Кибернетика в инженерии применяется для анализа масштабных сбоев систем, вызванных мелкими и незначительными ошибками.
  • Информатика. В информатике ее методы используют для анализа информации и управления вычислительной техникой.
  • Психология. В психологии существует отдельное направление психологической кибернетики, в рамках которого изучается взаимодействие систем анализа, сфер сознания и бессознательного в ходе взаимодействия людей с различными системами, а также между собой. Кроме того, эта дисциплина значительно повлияла на развитие психологии труда и ее подвидов.

Особняком стоит направление чистой кибернетики, в рамках которого происходит понятийное изучение систем управления . Ее главная задача – обнаружение основных принципов таких систем.

Внимание! Есть известная шутка про университет ядерной кибернетики, однако на данный момент не существует ни такого вуза, ни такого направления, как ядерная кибернетика.

Современные достижения и пути развития

Смена ориентиров

Конец XX века стал определяющим периодом для кибернетики как науки. В конце 60-х это направление лишилось поддержки со стороны научного сообщества и столкнулось с проблемой выбора дальнейшего пути развития. Возрождение произошло в 70-х годах, когда биологи занялись разработкой новой кибернетической концепции, применимой для природных организаций и систем, не изобретенных человеком. История кибернетики получила новое направление для развития.

В 1980-х появилась «новая кибернетика », которая изучала взаимодействие политических подгрупп и элементов, создающих структуру политического сообщества. Была выработана новая концепция информации - ее стали рассматривать как нечто, созданное человеком в процессе взаимодействия с окружающей средой. Одной из главных задач новой кибернетики стало разрешение противоречия между микро- и макроанализом. Акцент с управляемой сместился к управляющей системе, а также к межсистемным связям.

Кибертехнологии

Говоря о практических достижениях, нужно отметить появление отдельного направления, которое связано с разработкой и созданием кибернетических организмов . Главным образом кибертехнологии позволили совершить прорыв в медицине и улучшить жизнь людей с тяжелыми травмами и заболеваниями.

Важным этапом в этой сфере стало изобретение и повсеместное применение кохлеарных имплантатов - они позволяют улучшить восприятие звуков у слабослышащих людей. Существуют и глазные электронные имплантаты, но пока что они менее распространены из-за сложности производства и вживления пациентам.

Также кибертехнологии позволили создать бионические протезы - искусственные руки и ноги, принимающие и откликающиеся на сигналы нервной системы, успешно имплантируют пациентам с ампутированными конечностями.

Интересных результатов в нулевые годы добились американские ученые, которые создали управляемых жуков, подключив электроды к нервным узлам насекомых. Таким образом им удалось контролировать полет одного из жуков в течение получаса.

Следующая цель ученых - создание искусственного сердца , которое можно будет использовать в качестве имплантата. В 2011 году врачам удалось вживить подобное сердце пациенту, но после этого он прожил всего месяц. Исследования продолжаются, и ученые полагают, что в будущем достижения в области кибернетики позволят им создать полноценную замену любому человеческому органу.

Чему нас учит кибернетика

О науке Кибернетике

Вывод

Кибернетика занимается исследованием систем и при этом сама является открытой системой. Она взаимодействует с десятками других научных направлений и способна к обмену информацией с окружающей средой. Поэтому это научное направление в информационную эру играет важную роль.

Кибернетикой называют науку об управлении, связи и переработке информации.

Годом рождения современной кибернетики считается 1948 год, когда американский математик Н.Винер опубликовал труд «Кибернетика, или управление и связь в живых организмах и машинах». Кибернетика изучает общие свойства различных систем управления вне зависимости от их материальной основы. Эти свойства имеют место в живой природе, технике и в коллективах людей.

4.1. КИБЕРНЕТИКА И ДРУГИЕ НАУКИ

Читатель в общих чертах знает предмет многих естественных, общественных и технических наук, таких, как физика, математика, химия, биология, биофизика, история, электротехника и т.д. Среди этих наук особое положение занимает математика - наука, в которой изучаются пространственные формы и количественные отношения действительного мира. Исключительность этой науки в том, что она является инструментом познания в любой отрасли человеческого знания. Все науки, как уже отмечалось, развиваются, используя в той или иной степени математические закономерности. Подобное можно отнести и к кибернетике.

Винер увидел во многих разных науках общие вопросы и черты. Управление осуществляется в обществе, во многих технических системах, в живом организме. Информация перерабатывается людьми, вычислительными машинами, в биологических системах, она передается по проводной линии, радиоканалу, невральным структурам.

На базе многих наук и появилась кибернетика. Все перечислить невозможно, но несомненно влияние техники, математики (теория автоматического регулирования, математическая логика, теория информации и связи, вычислительные машины и др.) и физиологии (учение об условных рефлексах, принцип обратной афферентации, теория функциональных систем и др.).

Схематично место кибернетики в системе наук показано на рис. 4.1.

Рис. 4.1

Интересно отметить, что появление новых наук на базе комплекса существующих продолжается и сейчас. В качестве примера можно указать синергетику - область научных исследований, целью которых является выявление общих закономерностей в процессах образования, устойчивости и разрушения упорядоченных временных и пространственных структур в сложных системах различной природы (физической, химической, биологической и др.).

В развитие и создание кибернетики прямой или косвенный вклад внесли многие русские и советские ученые. Среди них физиологи и медики И.М. Сеченов (1829-1905), И.П. Павлов (1849 - 1936), А.А. Богданов (1873 - 1928), П.К. Анохин (1898-1974), В.В. Парин (1903- 1971), Н.М. Амосов (р. 1913), техники разных направлений и математики И.А. Вышне-градский (1831 - 1895), А.М.Ляпунов (1857- 1918), А.И. Берг (1893-1979), С.А. Лебедев (1902-1974), А.Н. Колмогоров 71903-1987), А.А. Харкевич (1904-1965), В.А. Котельников (р. 1908), Л.В. Канторович (1912-1986), В.М. Глушков (1923-1982) и др.

4.2. КИБЕРНЕТИЧЕСКИЕ СИСТЕМЫ

Кибернетической системой называют упорядоченную совокупность объектов (элементов системы), взаимодействующих и взаимосвязанных между собой, которые способны воспринимать, запоминать и перерабатывать информацию, а также обмениваться информацией.

Примерами кибернетических систем являются коллективы людей, мозг, вычислительные машины, автоматы. Соответственно этому элементами кибернетической системы могут быть объекты разной физической природы: человек, клетки мозга, блоки вычислительной машины и т.д.

Состояние элементов системы описывается некоторым множеством параметров, которые подразделяются на непрерывные, принимающие любые вещественные значения в некотором интервале, и дискретные, принимающие конечные множества значений. Так, например, температура тела человека - непрерывный параметр, а его пол - дискретный параметр. В общем случае состояние элемента кибернетической систе-

мы может изменяться и зависит как от самого элемента, так и от воздействия окружающих элементов и внешней среды.

Структура кибернетической системы определяется организацией связей между элементами системы и является функцией состояний самих элементов и внешних воздействий.

Функционирование кибернетической системы описывается тремя семействами функций: функциями, которые учитывают изменение состояний элементов системы, функциями, вызывающими изменения в структуре системы, в том числе вследствие внешнего воздействия, и функциями, определяющими сигналы, передаваемые системой за ее пределы. Для более полного описания системы следует еще учесть ее начальное состояние.

Кибернетические системы различаются по своей сложности, степени определенности и уровню организации.

Сложность системы зависит от количества элементов, ее составляющих, от сложности структуры и разнообразия внутренних связей. Существуют сложные кибернетические системы, которые однако, могут быть детально известны, так как являются созданием человека. Вместе с тем такие сложные кибернетические системы, как биологические, благодаря многочисленным и неясным многообразным связям между множеством элементов во многих случаях детальному описанию не поддаются. При исследовании сложных систем имеет место и процесс, обратный разделению системы на элементы: системы представляются в виде укрупненных блоков, каждый из которых сам является системой. Таким образом, сложные системы могут состоять из более простых. Система более высокого уровня представляет собой объединение подсистем более низкого уровня, т.е. организация системы имеет иерархический характер.

Между уровнями иерархии могут возникать взаимосвязи. Само понятие элементов в этом смысле является относительным. В различных случаях одна и та же часть системы может быть и элементом, и блоком, и всей системой. Так, например, при изучении функций мозга его можно рассматривать как элемент, тогда как при изучении работы мозга в связи с его внутренним строением за элемент следует принимать отдельные нейроны. В свою очередь, нейрон будет кибернетической системой при изучении его с учетом клеточного строения.

Кибернетические системы делятся на непрерывные и дискретные. В непрерывных системах все сигналы, циркулирующие в системе, и состояния элементов задаются непрерывными параметрами, в дискретных - дискретными. Существуют, однако, и смешанные (гибридные)

системы, в которых имеются параметры обоих видов. Деление систем на непрерывные и дискретные является условным и определяется необходимой степенью точности исследуемого процесса и техническими и математическими удобствами. Некоторые процессы или величины, имеющие дискретную природу, например электрический ток (дискретность электрического заряда: не может быть заряд меньше, чем заряд электрона), удобно описывать непрерывными величинами. В других случаях, наоборот, непрерывный процесс имеет смысл описывать дискретными параметрами. Так, например, непрерывную выделительную функцию почек удобно описывать дискретной пятибалльной характеристикой. Кроме того, при любых физических измерениях, производя их через определенные интервалы времени, фактически получают набор дискретных величин. Все сказанное свидетельствует, что дискретные системы являются более универсальными, чем непрерывные.

При исследовании непрерывных систем применяют аппарат дифференциальных уравнений, при исследовании дискретных систем - теорию алгоритмов.

В кибернетике и технике принято деление систем на детерминированные и вероятностные. Детерминированной называют такую систему, элементы которой взаимодействуют определенным образом. Состояние и поведение такой системы предсказывается однозначно и описывается однозначными функциями. Поведение вероятностных систем можно определить с некоторой долей достоверности, так как элементы системы находятся под влиянием столь большого числа воздействий, что взаимодействие всех элементов не может быть описано точно. Один из примеров - реакция организма на воздействие физическими факторами (силовое, электрическое, тепловое и др.); она имеет вероятностный характер.

Система называется замкнутой, если ее элементы обмениваются сигналами только между собой. Незамкнутые, или открытые, системы обязательно обмениваются сигналами с внешней средой.

Для восприятия сигналов из внешней среды и передачи их внутрь системы всякая открытая система обладает рецепторами (датчиками или преобразователями). У животных, как у кибернетической системы, реценторами являются органы чувств - осязание, зрение, слух и т.п., у автоматов - датчики: тензометрические, фотоэлектрические, индукционные и т.д. (см. 21.3).

Во внешнюю среду сигналы передаются посредством исполнительных механизмов, называемых эффекторами. Речь, руки, мимика лица являются для человека - кибернетической системы - эффекторами.

Рецептором для автомата с газированной водой является кнопка или приемник монет, эффектором - выдача газированной воды.

Сложные кибернетичечские системы обладают характерным свойством - способностью накапливать информацию, которая впоследствии может быть использована при работе управляющей системы. Это свойство называется, по аналогии с подобным свойством человеческого мозга, памятью. Запоминание в кибернетических системах осуществляется двумя способами: во-первых, вследствие изменения состояния элементов системы, во-вторых, в результате изменения ее структуры.

4.3. ЭЛЕМЕНТЫ ТЕОРИИ ИНФОРМАЦИИ

Центральное место в кибернетике занимает информация. Этот термин уже неоднократно встречался в курсе без специального разъяснения как общепонятным. Слово «информация» 1 означает, по современным представлениям, совокупность сведений, данных, передачу сообщений.

Источником информации может служить всякое явление или событие, однако оно должно иметь смысл и являться сигналом к тому или иному действию. Иногда говорят, что информация - система сведений об окружающем нас мире, которые получает человек в результате наблюдения и общения с другими людьми. Люди получают информацию, когда ощущают боль, голод, холод, видят, слышат, разговаривают с другими людьми, читают книги и т.п.

Однако представление о том, что информацию получает только человек, является субъективным. На самом деле это понятие имеет более широкий смысл. Так, непрерывное регулирование работы внутренних органов животных и системы развития растений связано с передачей информации.

Не следует вдаваться и в другую крайность, полагая, что всякое отражение событий в мире является информацией. Вряд ли можно считать, что понижение температуры в горах является для скал информацией о наступлении зимы.

Передача, получение и переработка информации свойственны системам, достаточно сложно организованным, специфическая особенность которых заключается в наличии процессов управления. Замеча-

Informatio (лат.) - разъяснение, осведомление.

тельной особенностью информации является то, что она уничтожает незнание чего-либо, уменьшает неопределенность ситуации.

Научный подход к изучению информации был вызван «информационным взрывом» - лавинообразным потоком информации в результате бурного развития науки и техники в середине XX в.

Понятие информации в кибернетике играет такую же важную роль, как понятие энергии и массы в физике. Раздел кибернетики, посвященный вопросам сбора, передачи, хранения, переработки и вычисления информации, получил название теории информации. Рассмотрим кратко элементы этой теории.

Передача информации осуществляется по каналам связи в виде сигналов, вырабатываемых органами кибернетической системы. Каналом связи называется среда, по которой передаются сигналы. При устном разговоре сигналом является речь, а каналом связи - воздух, при радиопередаче музыки сигналом является звук, а каналами связи - электромагнитное поле и воздух.

Физическим носителем сигнала могут быть всевозможные виды материи, которые при передаче одного сигнала могут чередоваться. Например, при радиопередаче мысль, выражаемая словом, переданная за счет биоэлектрических импульсов голосовым мышцам, вызывая их сокращения, создает звуковой образ, который в результате колебания мембраны в микрофоне преобразуется в электрический импульс - сигнал, передаваемый на расстояние. При этом сигналы должны удовлетворять требованиям изоморфизма. Под изоморфизмом понимают такое соответствие физически различных явлений, при котором сохраняется, не искажается содержание передаваемого сообщения.

Нарушение изоморфизма приводит к искажению информации. Искажение сигналов как вследствие нарушения изоморфизма, так и в результате внешних помех называют шумом.

В зависимости от значения передаваемых сигналов их делят на осведомительные, сообщающие какую-либо информацию, и исполнительные, которые заключают какую-либо команду к действию. Различают сигналы дискретные и непрерывные. Примером дискретного сигнала является передача азбукой Морзе или передача цифр импульсами тока, примером непрерывного - изменение напряжения в цепи, соответствующее изменению температуры.

Всякое сообщение состоит из комбинации простых сигналов определенной физической природы. Полный набор таких сигналов называют алфавитом, один сигнал - буквой алфавита. Для передачи сообщения его следует описать с помощью какого-либо алфавита, иначе говоря, за-

кодировать. Кодированием называется описание какого-либо сообщения с помощью определенного алфавита, т.е. установление однозначного соответствия между параметрами, характеризующими сигнал, и информацией. Перевод этого сообщения на другой алфавит называется перекодированием, расшифровка сообщения - декодированием.

Для передачи сообщений в хозяйственной и научной жизни кодирование производится человеком. Однако природой созданы естественные способы кодирования. Эти способы представляют огромный интерес для науки, например изучение способа кодирования наследственной информации о взрослом организме в зародышевой клетке. Применение кодирования позволяет использовать небольшой алфавит для передачи огромной информации. Оказалось, что любую информацию можно закодировать с помощью двух знаков (0,1). Такой код называется двоичным.

Передача любого сигнала связана с затратой энергии, однако количество передаваемой информации и тем более ее смысл не зависят от энергии сигнала. Более того, очень часто сигнал малой энергии передает сообщение, в результате которого может быть вызван процесс, связанный с огромной затратой энергии. Например, атомный взрыв может быть вызван нажатием кнопки-включателя соответствующего устройства, спокойная информация о чьем-либо неприглядном поступке может вызвать взрыв негодования.

В кибернетике неважно, какая энергия затрачена для передачи информации, но существенно, какое количество информации будет передано или можно передать по тому или иному каналу связи. Для количественного подсчета информации следует отвлечься от смысла сообщения, аналогично тому, как для решения арифметического примера отвлекаются от конкретных предметов. Складывая, например 2 и 3, получаем 5, при этом несущественно, какие предметы складываем: яблоки, ракеты или звезды.

Как же вычисляется количество информации? Уже отмечалось, что информация тогда имеет смысл, когда она уменьшает степень незнания, т.е. процесс извлечения информации связан с увеличением определенности наших сведений об объекте. Сообщение несет информацию, если из совокупности реально возможных событий указывается некоторое определенное.

Например, читая историю болезни, врач получает информацию о болезнях данного пациента: из всего многообразия различных заболеваний выделены только те, которые перенес данный больной. Сообщение об уже известном не несет информации; так, для грамотного человека

не содержит информации утверждение, что после 15-го числа месяца наступает 16-е.

Чем больше различных возможностей имеет событие, тем большую информацию о нем несет сообщение. Так, при однократном бросании игральной кости (6 граней) получают бо льшую информацию, чем при бросании монеты (2 стороны), ибо первый случай имеет большее число равновозможных исходов, чем второй. Говорят, что количество информации изменяется в отношении, обратном вероятности.

Так как мерой неопределенности каких-либо событий является вероятность, то следует предположить, что количественная оценка информации связана с основными представлениями теории вероятностей. Действительно, современный метод подсчета информации основан на вероятностном подходе при рассмотрении систем связи и кодирования сообщений.

Рассмотрим метод подсчета количества информации, содержащейся в одном сообщении, предложенный Шенноном и используемый в современной теории информации.

Мера количества информации может быть найдена как изменение степени неопределенности в ожидании некоторого события. Предположим, что имеется k равновероятных исходов события. Тогда очевидно, что степень неопределенности одного события зависит от k: в случае k = 1 предсказание события является достоверным, т.е. степень неопределенности равна нулю; в случае большого k предсказать событие трудно, степень неопределенности велика.

Следовательно, искомая функция f (k) (мера количества информации или изменение степени неопределенности) должна быть равна нулю при k = 1 и при возрастании k возрастать.

Кроме того, функция f должна удовлетворять еще одному условию. Допустим, что проводятся два независимых опыта, один из них имеет k равновероятных исходов, а другой - l. Естественно предположить, что неопределенность f (kl) совместного появления некоторого сочетания событий первого и второго опытов больше f (k) и f (l) и равна сумме неопределенностей исходов каждого из опытов:

В левой части формулы представлена функция f (kl) от произведения kl, равного числу возможных пар сочетаний исходов первого и второго опытов. Формуле (4.1) соответствует логарифмическая функция f (k) - log. k.

Кроме того, полученная функция удовлетворяет условиям log a 1 = 0 и возрастает при увеличении k.

Так как переход от одной системы логарифмов к другой в зависимости от основания сводится к умножению функции log a k на постоянный множитель, то основание логарифмов решающей роли не играет и скажется лишь на выборе единиц количества информации.

Итак, будем считать функцию log a k мерой неопределенности (количество информации) при k равновероятных исходах. Вероятность каждого исхода (события) равна р = р 1 = р 2 = р 3 = ... = p k = 1/k Так как неопределенности различных событий суммируются, то неопределенность каждого отдельного исхода равна

В опыте, имеющем исходы различной вероятности р 1 , р 2 , ... p k мера неопределенности каждого отдельного исхода запишется по выражению

(4.3):

а мера неопределенности всего опыта - как сумма этих неопределенностей:

Это среднее значение логарифма вероятности. По аналогии с формулой Больцмана [см. (12.20)], Н называется энтропией или информационной энтропией. Эту величину можно рассматривать как меру информации.

Исследуя на экстремум (4.4), находим, что самой большой неопределенностью обладает событие с равновероятными исходами. Испытание в этом случае дает наибольшую информацию:

В частном случае двух равновозможных событий количество информации, полученной при сообщении, равно

Для выбора единицы количества информации положим а - 2, тогда из (4.6) имеем

H= loga 2 = 1.

Это количество информации принимается за бит (бит - информация, содержащаяся в сообщении об одном из двух равновероятных событий). Принимая в (4.5) а = 2, получаем, что количество информации

выражается в битах.

Посчитаем информацию, полученную при выпадании 1 в случае бросания игральной кости. Используя (4.7), имеем

Понятие информации является одним из важнейших в кибернетике, так как всякий процесс управления связан с получением, накоплением и передачей информации. Отражая общие свойства материального мира, понятие информации выступает как философская категория.

Информационные процессы имеют место при работе любых систем управления - от процессов передачи наследственных признаков до процессов общения между людьми и машинами. Аналогично тому как посредством энергии в физике определяется мера превращения одной формы движения в другую, в кибернетике информация является мерой процессов отражения материального мира.

Как уже отмечалось, информация передается по каналам связи с помощью сигналов. Информация, воспринятая от источника приемными элементами (органами чувств, микрофонами, фотоэлементами и т.п.), преобразуется кодирующим устройством в форму, удобную для передачи сигнала, например в электрический сигнал, и передается по каналу связи к приемнику, в котором информация декодируется, например в звук, и сообщается слушателю. Общая схема системы передачи информации изображена на рис. 4.2.

Рис. 4.2

В заключение отметим, что некоторые количественные выражения теории информации пока еще не нашли приложения в медицинской кибернетике. Это обстоятельство обусловлено общим, пока еще в значительной степени качественным характером медицины.

4.4. УПРАВЛЕНИЕ И РЕГУЛИРОВАНИЕ

Для того чтобы происходило целенаправленное изменение поведения кибернетической системы, необходимо управление.

Управление - это осуществление воздействия на кибернетическую систему (объект) в соответствии с имеющейся программой или целью ее функционирования. Говоря кратко, управление - это воздействие на объект для достижения заданной цели.

Цели управления могут быть различными. В простейшей случае это, например, просто поддержание постоянным какого-либо параметра (постоянной влажности в помещении, температуры). В более сложных кибернетических системах целью управления являются задачи приспособления к изменяющимся условиям, например приспособление к изменяющейся среде обитания биологического индивидуума.

Установлено, что схема управления объектами различной природы является общей как для органического мира, включая механизмы управления в живом организме и механизмы биологической эволюции, так и для неорганического мира, вплоть до электронно-вычислительных машин и управления космическими кораблями.

Это сходство позволяет проводить аналогии между живыми системами, прошедшими усовершенствование в течение длительного процесса эволюции, и техническими устройствами, более простыми и менее совершенными.

Исследование биологических систем управления и сравнение их с техническими системами, с одной стороны, позволяют найти новые принципы для создания более сложных технических устройств, а с другой стороны, понять принципы управления, которые лежат в основе биологических объектов и процессов. Первая сторона вопроса является содержанием научного направления, получившего название «бионика».

Во всякой системе управления следует различать управляющий орган и объект управления, а также линии связи (каналы связи) между ними. Управляющий орган является весьма важной частью кибернетической системы. Он представляет собой управлющую систему, которая перерабатывает полученную информацию и вырабатывает управляю-

щие воздействия. Процессы переработки информации происходят в различных естественных и искусственных управляющих системах. К ним относятся мышление, переработка информации в автоматизированных системах, изменение наследственной информации в процессе эволюции биологических видов и т.п. Управляющие воздействия передаются через соответствующие эффекторы на объект управления. Связь осуществляется за счет физических процессов, несущих информацию и представляющих собой сигнал. Получив сигнал, объект управления перейдет в соответствующее состояние.

Наиболее интересным является такое управление, при котором операции, обеспечивающие достижения заданной цели управления, выполняются системой, функционирующей без вмешательства человека в соответствии с заранее заданным алгоритмом. Такой вариант называется автоматическим управлением.

Разновидностью автоматического управления является автоматическое регулирование. Этот термин используют в тех случаях, когда цель управления - автоматическое поддержание постоянства или изменения по требуемому закону некоторой физической величины объекта управления (регулирования). Управляющий орган при этом может быть назван регулятором.

Если управляющая система не получает или не учитывает информацию от объекта управления, она называется разомкнутой. Схематично такое управление показано на рис. 4.3 с указанием канала (линии) прямой связи. Такое управление реализуется в светофоре, генетической системе, ЭВМ.

В режиме разомкнутой системы осуществляется автоматическое управление (регулирование) по возмущению. Поясним это примером устройства, автоматически поддерживающего комфортные температурные условия в помещении (рис. 4.4). Здесь объектом регулирования является кондиционер. Возмущение (температура наружного воздуха) воздействует на регулятор (специальный термометр) и оказывает влияние на температуру воздуха в помещении. Термометр в зависимости от возмущения подает сигнал кондиционеру для включения его в работу либо в режиме нагревающего устройства, либо охлаждающего.

Воздух соответствующей температуры поступает в помещение. Существенно,

что в этой системе нагревание или охлаждение воздуха в помещении зависит от температуры окружающей среды, а не от температуры воздуха в помещении.

Более распространенными и эффективными являются системы управления с обратной связью - замкнутые системы управления (рис. 4.5). Управляющий орган при этом перерабатывает информацию, полученную как извне от других объектов си-

стемы, так и от объекта управления по линии обратной связи.

Обратной связью называют передачу воздействия или информации с выхода системы (элемента) на ее вход, в частности воздействие объекта управления на управляющий орган.

Различают положительную и отрицательную обратную связь. При положительной обратной связи результаты процесса стремятся усилить его. В технических устройствах положительная обратная связь способствует переходу системы в другое равновесное состояние или вызывает лавинный процесс.

Отрицательная обратная связь препятствует развитию, изменению процесса и стабилизирует его. Отрицательная обратная связь используется в замкнутых системах управления.

В качестве технической системы с отрицательной обратной связью рассмотрим терморегулятор термостата, в котором используется контактный термометр (рис. 4.6).

При температуре, ниже заданной, ртутный столбик в термометре разрывает контакт в цепи реле, оно включает нагреватель, и температура повышается. При температуре выше нормы ртутный столбик замыкает цепь реле, и нагреватель отключается. Рассмотренная система позволяет поддерживать в термостате температуру в определенном интервале. Этот пример иллюстрирует автоматическое (регулирование) по отклонению.

К кибернетическим системам с отрицательной обратной связью (замкнутая система управления) относятся самоуправляющиеся

(саморегулируемые) системы. Самоуправляющейся системой является, например, организм животного, в котором самостоятельно поддерживаются постоянный состав крови, температура и другие параметры. Система, состоящая из группы животных и хищников, питающихся ими, например зайцы и волки, также является саморегулируемой. Увеличение поголовья волков приводит к уменьшению количества пищи (зайцев), это, в свою очередь, приводит к уменьшению количества волков, отсюда увеличивается поголовье зайцев, и т.д. В результате, если отвлечься от других факторов (отстрел волков, засуха и пр.), численность волков и зайцев поддерживается в этой системе на некотором определенном уровне.

Схему самоуправляющейся системы такого типа можно представить состоящей из следующих частей (рис. 4.7): объекта управления, который воздействует на внешнюю среду, некоего чувствительного элемента, который получает информацию как от внешней среды, так и в результате изменений, происходящих с объектом управления, и управляющего органа (регулятора). По каналу 1 в регулятор поступает первичная осведомляющая информация, по каналу 2 - управляющая информация

Рис. 4.7

к объекту управления. Через внешнюю среду и чувствительный элемент осуществляется обратная связь.

Изучение самоуправляющихся систем представляет особый интерес для физиологии и биологии.

Существуют системы оптимального управления, целью которых является поддержание экстремального (минимального или максимального) значения некоторой величины в зависимости от внешних условий и управляющих сигналов системы.

Простейшим примером такого регулирования может служить устройство кондиционера, создающего температуру в соответствии с влажностью воздуха. Оптимальная система управления уместна и в тех случаях, когда функция системы сводится к сохранению регулируемых параметров в максимальном или минимальном значении при изменении нерегулируемых параметров.

Более подробно вопросы управления рассматриваются в специальной теории управляющих систем. Основными принципами, положенными в ее основу, являются обратная связь и многоступенчатость управления. Обратная связь позволяет кибернетической системе учитывать реальные обстоятельства и согласовывать их с необходимым поведением. Многоступенчатая схема управления обусловливает надежность и устойчивость кибернетических систем.

4.5. МОДЕЛИРОВАНИЕ

В различных областях знаний для исследования реальных систем и процессов используются модели.

Модель - это объект любой природы, умозрительный или материально реализованный, который воспроизводит явление, процесс или систему с целью их исследования или изучения. Метод исследования явлений, процессов и систем, основанный на построении и изучении их моделей, получил название моделирования.

Таким образом, под моделированием в настоящее время понимают не только предметное, копирующее моделирование типа создания модели планера, но и научный метод исследования и познания глубокой сущности явления и объектов. Основой моделирования является единство материального мира и атрибутов материи - пространства и времени, а также принципов движения материи.

В кибернетике моделирование - основной метод научного познания. Это обусловлено абстрактностью кибернетики, общностью струк-

туры кибернетических систем и систем управления разной природы. По существу схемы, приведенные на рис. 4.3-4.7, являются простыми моделями разных систем управления. Вопросы моделирования в этом параграфе рассматривают шире рамок кибернетики, учитывая универсальность этого метода и медико-биологическую направленность интересов читателя.

Остановимся на основных, наиболее существенных разновидностях моделей: геометрические, биологические, физические (физико-химические) и математические.

Геометрические модели - наиболее простая их разновидность. Это внешнее копирование оригинала. Муляжи, используемые в преподавании анатомии, биологии и физиологии, являются геометрическими моделями. В быту геометрические модели часто используются с познавательной или декоративно-развлекательной целью (модели автомашин, железной дороги, зданий, куклы и т.п.).

Создание биологических (физиологических) моделей основано на воспроизведении в лабораторных условиях определенных состояний, например заболевания у подопытных животных. В эксперименте изучаются механизмы возникновения состояния, его течение, способы воздействия на организм для его изменения. К таким моделям относят искусственно вызванные инфекционные процессы, гипертрофирование органов, генетические нарушения, злокачественные новообразования, искусственно созданные неврозы и различные эмоциональные состояния.

Для создания этих моделей на подопытный организм производятся самые различные воздействия: заражение микробами, введение гормонов, изменение состава пищи, воздействие на периферическую нервную систему, изменение условий и среды обитаний и пр.

Биологические модели важны для биологии, физиологии, фармакологии и генетики.

Создание физических и физико-химических моделей основано на воспроизведении физическими и химическими способами биологических структур, функций или процессов. Физико-химические модели более идеализированы, чем биологические, и представляют собой далекое подобие моделируемого биологического объекта.

В качестве примера одной из первых физико-химических моделей можно привести модель роста живой клетки (1867), в которой рост имитировался выращиванием кристаллов CuSO 4 в водном растворе Си и электрические [см. (18.13)] колебания или апериодический разряд конденсатора [см. (18.17)], поглощение света веществом [(см. ф. (29.6)] и закон радиоактивного распада [см. (32.8)]. В этой аналогичности дифференциальных уравнений, относящихся к различным явлениям, можно усмотреть единство природы. Такая особенность позволяет использовать аналогии при математическом моделировании, а соответствующие модел и называют предметно-математическими моделями прямой аналогии.

Изучение явлений с помощью математических моделей подразделяется на четыре этапа.

Первый этап состоит в выделении объектов моделирования и формулировании законов, их связывающих. Он завершается записью в математических терминах представлений о связях между объектами модели.

На втором этапе происходит исследование математических задач, вытекающих из математической модели. Целью этого этапа является решение прямой задачи, т.е. получение данных, которые можно сравнить с результатами опыта или наблюдений. Для решения поставленных задач используются математический аппарат и вычислительная техника, позволяющая получить количественную информацию.

Третий этап позволяет выяснить, насколько выдвинутая гипотетическая модель удовлетворяет критерию практики. Решение этого вопроса связано с соответствием теоретических следствий экспериментальным результатам. В рамках этого этапа часто решается обратная задача, в которой определяются не известные ранее некоторые характеристики модели по результатам сопоставления выходной информации с результатами наблюдений.

Предложенная модель непригодна, если ни при каких значениях ее характеристик нельзя согласовать выходную информацию с экспериментом.

В четвертый этап входит анализ модели в результате накопления данных о ней и ее модернизация.

В зависимости от характера моделей их условно делят на феноменологические и структурные.

Феноменологические (функциональные) модели отражают временные и причинно-следственные отношения между параметрами, характеризующими функции биологического объекта без учета его структуры.

Объект рассматривается как «черный ящик» - система, в которой внешнему наблюдателю доступны лишь входные и выходные величины, а внутренняя структура неизвестна (рис. 4.8). Метод «черного ящика»

широко применяют для решения задач моделирования сложных кибернетических систем в тех случаях, когда интерес представляет поведение системы. Так, например, учитывая сложную «конструкцию» мозга человека и риск прямого приборного внедрения в его структуры, резонно исследовать мозг как «черный ящик»). Это можно делать, исследуя умственные способности человека, его реакцию на звук, свет и т.д.

Структурные модели строятся с учетом структуры объекта, отражающей его иерархические уровни.

При этом к структуре относят частные функции отдельных подсистем. Такие модели лучше выражают сущность биологических систем, но сложны для вычислений.

Составление моделей проводится по определенной схеме. Вначале формулируется цель моделирования, затем высказывается гипотеза, представляющая качественное описание системы, выбираются тип модели и математические методы ее описания в зависимости от цели и рода информации.

Заключительный этап состоит в создании модели и сравнении ее с системой-объектом с целью идентификации.

4.6. ПОНЯТИЕ О БИОЛОГИЧЕСКОЙ И МЕДИЦИНСКОЙ КИБЕРНЕТИКЕ

Биологическая кибернетика представляет собой научное направление, в котором идеи, методы и технические средства кибернетики применяются к рассмотрению задач биологии и физиологии.

Биологическая кибернетика может быть представлена теоретической и практической частью. Основной задачей теоретической биологической кибернетики является изучение общих вопросов управления, хранения, переработки и передачи информации в живых системах. Одним из важнейших методов практической биологической кибернетики является метод моделирования - моделирование структуры и поведения биологических систем. В развитие этого метода биологическая кибернетика включает и вопросы конструирования искусственных систем, воспроизводящих деятельность отдельных органов, их внутренние связи и внешние взаимодействия. В этом направлении биологическая кибернетика смыкается с медицинской.

Медицинская кибернетика является научным направлением, связанным с использованием идей, методов и технических средств кибернетики в медицине и здравоохранении. Условно медицинскую кибернетику можно представить следующими группами.

1. Вычислительная диагностика заболеваний. Эта часть в основном связана с использованием вычислительных машин для постановки диагноза.

Структура любой диагностической системы состоит из медицинской памяти (совокупный медицинский опыт для данной группы заболеваний) и логического устройства, позволяющего сопоставить симптомы, обнаруженные у больного опросом и лабораторным обследованием, с имеющимся медицинским опытом. Этой же структуре следует и диагностическая вычислительная машина.

Первым шагом является разработка методик формального описания состояния здоровья пациента, проводят тщательный анализ по уточнению клинических параметров и признаков, используемых в диагностике. Отбирают главным образом те признаки, которые допускают количественную оценку.

Кроме количественного выражения физиологических, биохимических и других характеристик больного для вычислительной диагностики необходимы сведения о частоте (априорной вероятности) клинических синдромов и диагностических признаков, об их классификации, зависимости, об оценке диагностической эффективности признаков и т.п. Все эти данные хранятся в памяти машины.

Следующим шагом является выбор алгоритма. Машина сопоставляет симптомы больного с данными, заложенными у нее в памяти.

Логика вычислительной диагностики соответствует логике врача, устанавливающего диагноз: совокупность симптомов сопоставляется с предшествующим опытом медицины.

Новую (неизвестную) болезнь машина не установит. Врач, встретивший неизвестное заболевание, сможет описать его признаки. Подробности такого заболевания можно установить, лишь проводя специальные исследования. ЭВМ в таких исследованиях сможет играть вспомогательную роль.

2. Кибернетический подход к лечебному процессу. Установив диагноз, врач назначает и проводит лечение, которое, как правило, не сводится к одноразовому воздействию. Это сложный процесс, во время которого врач вновь и вновь получает медико-биологическую информацию о больном, анализирует эту информацию и в соответствии с ней уточняет, изменяет, прекращает или продолжает лечебное воздействие.

Для кибернетических систем характерно целенаправленное воздействие управляющей системы на объект управления (см. 4.4).

Врач управляет больным, система врач-больной является кибернетической, поэтому кибернетический подход возможен и к лечебному процессу. Однако, несмотря на такие возможности, пока еще проникновение идей, методов и технических средств кибернетики в эту, главнейшую, часть медицины достаточно скромно.

В настоящее время кибернетический подход к лечебному процессу облегчает работу врача, позволяет эффективнее проводить лечение тяжелобольных, своевременно принять меры при осложнениях во время операции, разработать и контролировать процесс лечения медикаментами, создавать биоуправляемые протезы.

Кратко остановимся на возможностях применения такого подхода.

Контроль за состоянием организма человека необходим во многих областях человеческой деятельности (спортивной, производственной, учебной, военной), но особенно важен он в стрессовых ситуациях или в таких лечебных условиях, как, например, хирургические вмешательства с применением искусственного кровообращения, дыхания, при реанимации, в состоянии наркоза и т.п.

Для этих целей создаются информационные системы оперативного врачебного контроля (ИСОВК), которые осуществляют съем медико-биологической информации, автоматическое распознавание функционального состояния пациента, фиксацию нарушений в деятельности организма, диагностирование заболевания, управление устройствами, регулирующими жизненно важные функции.

В задачи оперативного врачебного контроля входят наблюдение за состоянием тяжелобольных с помощью систем слежения (мониторных систем), наблюдение за состоянием здоровых людей, находящихся в экстремальных условиях (стрессовые состояния, невесомость, гипербарические условия, среда с пониженным содержанием кислорода и т.п.).

Реализация принципа интенсивного ухода возможна в результате создания комплекса, позволяющего автоматически непрерывно контролировать состояние больного и сообщать о его изменениях.

Особенно важно получать быстрые и точные сведения о состоянии больного во время операции. В процессе операции фиксируется огромное количество (около 1000) различных параметров, характеризующих состояние больного. Проанализировать и проследить за таким количеством параметров в чрезвычайно короткие сроки для врача практически невозможно. В этих случаях на помощь приходит ЭВМ, тем более что при использовании ЭВМ в нее можно заранее вложить предшествующие

записи из истории болезни, сведения о наличии медикаментов, указания мер, которые необходимо предпринять в критических ситуациях.

Общие данные об оперируемых больных вводятся в ЭВМ заранее. Ввод данных о текущем состоянии производится с момента поступления больного в операционную. Кроме сведений о состоянии больного вводятся сведения о времени, виде и дозе анестезии и медикаментов и начинается непрерывная фиксация медико-биологических параметров. В результате, если какие-либо показатели будут выходить за критические значения, ЭВМ сообщит в виде звуковых или световых сигналов об опасности, выдаст на регистрирующее устройство информацию, объясняющую причины тревоги, и рекомендации по их устранению.

Еще одной возможностью применения кибернетики в медицине является математическое моделирование лечебного процесса, которое может служить основой для расчета оптимальных лечебных воздействий. Так, например, удается рассчитать процесс введения лекарственного препарата в организм больного, с тем чтобы вызвать наилучший лечебный эффект.

Кибернетический подход реализуется при создании сложных протезов, заменяющих некоторые органы. Поясним это примером.

Исследование биотоков мышц показало, что из-за возможности их съема непосредственно на мышцах удается определить информацию, посылаемую к мышцам (исполнительным, управляемым органам) центральной нервной системой (управляющей системой). Было установлено также, что биотоки могут возникать в мышце при команде центральной нервной системы и без выполнения команды, например в случае отсутствия конечности или ее части.

Эти свойства биотоков мышц позволили разработать активные протезы конечностей. Обычный протез, например ноги, восстанавливал лишь часть функции - опору, функция управления и координации в нем отсутствовала.

Разработаны протезы конечностей с биоэлектрическим управлением. Для управления такими конечностями разработаны специальные системы, в которые входят устройства съема биопотенциалов, усилитель и преобразователь, усиливающий сигнал и трансформирующий его в форму, пригодную для управления механической частью протеза (электродвигатели, редукторы и т.п.) и приведения в движение собственно протеза (кисть руки, пальцы, стопа ноги и т.д.).

С помощью преобразователей (датчиков), воспринимающих внешние воздействия на искусственный орган, осуществляется обратная связь: электрический сигнал с преобразователя трансформируется в сиг-

нал, подобный импульсам в воспринимающих нервах живого организма, и посылается от периферии к центру через неповрежденные участки кожи больной конечности.

3. Автоматизированные системы управления и возможности применения их для организации здравоохранения. В предыдущих разделах в основном делался акцент на процессы управления в биологических системах. Однако в своем первородном варианте термин «управление» больше си-нонимизировался с понятием «руководство» и относился к управлению хозяйством, предприятием, т.е. коллективом людей, выполняющих определенную цель. Такое понимание управления, разумеется, также является кибернетическим и, следовательно, процесс управление-руководство может быть оптимизирован с использованием методов и технических средств кибернетики.

Такая оптимизация привела к созданию в народном хозяйстве автоматизированных систем управления (АСУ). АСУ отличается от традиционных форм управления тем, что в них широко используют вычислительную технику для сбора и переработки информации, а также новые организационные принципы для реализации наиболее эффективного управления соответствующим объектом (системой).

Объекты управления АСУ различны как по своим масштабам, так и по назначению: участок цеха, кабинет врача, приемное отделение, предприятие, школа, больница, здравоохранение, отрасль промышленности, народное хозяйство страны и т.д.

В зависимости от уровня иерархии АСУ подразделяют на отдельные системы. Так, например, практически в любой отрасли хозяйства можно выделить отраслевую автоматизированную систему управления (ОАСУ).

Здравоохранение есть отрасль народного хозяйства, поэтому для управления этой отраслью была создана ОАСУ «Здравоохранение».

Не вдаваясь в детали такой ОАСУ, что является задачей специального курса в медицинском вузе, отметим лишь ее некоторые особенности.

Любые ОАСУ могут строиться на основе моделей, которые учитывают не только связи внутри данной отрасли, но и межотраслевые связи, т.е. взаимоотношение данной системы со всем народным хозяйством. Применительно к ОАСУ «3дравоохранение» модель должна включать как блок управления, так и другие элементы: профилактику, лечение (с диагностикой), медицинскую науку, кадры, материальное обеспечение.

Каждый из перечисленных элементов (блоков) ОАСУ связан как с элементами этой же системы, так и с другими системами. Проиллюстрируем это на примере профилактики заболеваний. Она включает иммунизацию населения, массовые медицинские осмотры, медицинское

просвещение и др. Массовые медицинские осмотры связаны с наличием подготовленных врачебных кадров, обеспеченностью аппаратурой и др. (внутренние связи и зависимости), состоянием и развитием промышленных предприятий, размещением населения по географическим зонам и др. (внешние связи, выходящие за пределы данной ОАСУ).