Всякое целое число большее единицы, однозначно разлагается на простые делители.

Иоганн Карл Фридрих Гаусс

Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг - 23 февраля 1855) - немецкий математик, астроном и физик, считается одним из величайших математиков всех времён, «королём математиков».

Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери - яркий интеллект.

В семь лет Карл Фридрих поступил в Екатерининскую народную школу. Поскольку считать там начинали с третьего класса, первые два года на маленького Гаусса внимания не обращали. В третий класс ученики обычно попадали в десятилетнем возрасте и учились там до конфирмации (пятнадцати лет). Учителю Бюттнеру приходилось заниматься одновременно с детьми разного возраста и разной подготовки. Поэтому он давал обычно части учеников длинные задания на вычисление, с тем чтобы иметь возможность беседовать с другими учениками. Однажды группе учеников, среди которых был Гаусс, было предложено просуммировать натуральные числа от 1 до 100. По мере выполнения задания ученики должны были класть на стол учителя свои грифельные доски. Порядок досок учитывался при выставлении оценок. Десятилетний Карл положил свою доску, едва Бюттнер кончил диктовать задание. К всеобщему удивлению, лишь у него ответ был правилен. Секрет был прост: пока диктовалось задание, Гаусс успел для себя открыть заново формулу для суммы арифметической прогрессии! Слава о чудо-ребёнке распространилась по маленькому Брауншвейгу.

В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать - математиком или филологом.

О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду - герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счёта. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Гёттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.

В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был всё создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Гёттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.

«30 марта 1796 года наступает для него день творческого крещения… - пишет Ф. Клейн. - Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории „первообразных“ корней. И вот однажды утром, проснувшись, он внезапно ясно и отчётливо осознал, что из его теории вытекает построение семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n -угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида

n = 2 2 k + 1

(числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

Это событие явилось поворотным пунктом в жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».

Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времён». Сколь трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошёл, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли…» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.

Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.

«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашёл отношение объёмов цилиндра и вписанного в него шара — 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, но памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», - писал Г. Вебер.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса - летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашёл полное доказательство гипотезы Эйлера. Впрочем, Гаусс ещё не знал о работах своих великих предшественников. Весь нелёгкий путь к «золотой теореме» он прошёл самостоятельно!

Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.

В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности - о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашёл лишь 23 октября 1813 года, причём в дневниках он отметил, что это совпало с рождением сына.

За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.

«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.

В Брауншвейге Гаусс не имел литературы, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвящённую доказательству Основной теоремы алгебры — утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом - комплексным. Гаусс критически разбирает все предшествующие попытки доказательства и с большой тщательностью проводит идею д"Аламбера. Безупречного доказательства всё же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал ещё три доказательства Основной теоремы (последний раз - в 1848 году).

«Математический век» Гаусса - менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).

Очень многие исследования Гаусса остались неопубликованными и в виде очерков, незаконченных работ, переписки с друзьями входят в его научное наследие. Вплоть до 2-й мировой войны 1939-45 оно тщательно разрабатывалось Гёттингенским учёным обществом, которое издало 12 томов сочинений Гаусса. Наиболее интересными в этом наследии являются дневник Гаусса и материалы по неевклидовой геометрии и теории эллиптических функций. Дневник содержит 146 записей, относящихся к периоду от 30 марта 1796, когда 19-летний Гаусс отметил открытие построения правильного 17-угольника, по 9 июля 1814. Эти записи дают отчётливую картину творчества Гаусса в первой половине его научной деятельности; они очень кратки, написаны на латинском языке и излагают обычно сущность открытых теорем. Материалы, относящиеся к неевклидовой геометрии, обнаруживают, что Гаусс пришёл к мысли о возможности построения наряду с евклидовой геометрией и геометрии неевклидовой в 1818, но опасение, что эти идеи не будут поняты, было причиной того, что Гаусс их не разрабатывал далее и не опубликовывал. Более того, он категорически запрещал опубликовывать их тем, кого посвящал в свои взгляды. Когда вне всякого отношения к этим попыткам Гаусса неевклидова геометрия была построена и опубликована Н.И. Лобачевским, Гаусс отнёсся к публикациям Н.И. Лобачевского с большим вниманием, был инициатором избрания его чл.-корр. Гёттингенского учёного общества, но своей оценки великого открытия Н.И. Лобачевского по существу не дал. Архивы Гаусса содержат также обильные материалы по теории эллиптических функций и своеобразную их теорию; однако заслуга самостоятельной разработки и публикации теории эллиптических функций принадлежит Якоби и Абелю. Содержательный набросок теории кватернионов, 20 лет спустя независимо открытых Гамильтоном так же обнаружен в неопубликованных работах Гаусса.

С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.

Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц. Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было непросто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной.

Гаусс начал интересоваться астрономией ещё в Гёттингене. Кое-какие наблюдения он проводил в Брауншвейге, причём часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу.

Учёный вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашёл планету (её назвали Церерой). Это была подлинная сенсация!

25 марта 1802 году Ольберс открывает ещё одну планету - Палладу. Гаусс быстро вычисляет её орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.

К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Ещё в 1802 году он предлагает куратору Гёттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 года. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», — восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, по-видимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.

Жизнь Гаусса в Гёттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребёнок. Вдобавок Наполеон обложил Гёттинген тяжёлой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Лаплас. Оба раза Гаусс гордо отказался. Однако нашёлся ещё один благодетель, на этот раз - аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гёте. «Смерть мне милее такой жизни», - пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».

В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в своё время за три дня напряжённого счёта вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространённых методов обработки результатов наблюдений.

На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.

Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Мёбиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.

К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии - задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях».

В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящён внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с её положением в пространстве.

Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Гаусс предложил числовую характеристику меры искривления поверхности.

К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несёт печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы ещё не определились.

В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса: умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Гёттинген приезжает приглашённый по инициативе Гаусса 27-летний физик Вильгельм Вебер. Гаусс познакомился с ним в 1828 году в доме Гумбольдта. Гауссу было 54 года, о его замкнутости ходили легенды, и всё же в Вебере он нашёл сотоварища по занятиям наукой, какого он никогда не имел прежде.

Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нойбургом.

Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Гёттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Гаусс создаёт одну из важнейших глав математической физики - теорию потенциала.

Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Гёттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма). Возвратился в Гёттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года.

В последние годы жизни Гаусса ему воздавались всевозможные почести, но он не был настолько счастлив, насколько заслужил на это право. Оставаясь, как всегда, могучим разумом и плодотворно изобретательным, Гаусс не стремился к отдыху, когда за несколько месяцев до смерти появились первые признаки его последней болезни.

В первый раз, более чем за 20 лет, он покинул Гёттинген 16 июня 1854 года, чтобы увидеть строительство железной дороги между его городом и Касселеем - Гаусс всегда проявлял большой интерес к сооружению и действию железных дорог. Лошади понесли, он был выброшен из кареты, остался невредим, но сильно потрясённым. Он выздоровел и даже доставил себе удовольствие быть очевидцем церимонии открытия железной дороги 31 июля 1854 года. Это был его утешительный день.

В самом начале нового года он стал страдать большей частью от расширения сердца и недостаточности дыхания. Тем не менее, он работал, когда мог, хотя его руку сводило и, наконец, нарушился его красивый ясный почерк.

В полном сознании почти до самого конца, Гаусс спокойно умер рано утром 23 февраля 1854 года на 78-м году жизни.

В честь Гаусса названы:

  • кратер на Луне;
  • одна из малых планет;
  • система единиц СГС именуется гауссовой;
  • единица измерения магнитной индукции в системе СГС;
  • одна из фундаментальных астрономических постоянных — постоянная Гаусса;
  • вулкан Гауссберг в Антарктиде;
  • смотровая башня в немецком городе Дрансфельд;
  • один из корпусов Колифорнийского университета;
  • одно из зданий университета в штате Айдахо (Инженерный колледж).
  • В Федеративной Республике Германии (1955, 1977) и Германской Демократической Республике (1977) выпущены почтовые марки посвященные памяти Гаусса.

Портрет Гаусса был размещён на банкноте в 10 немецких марок:

Имя Гаусса носят следующие научные объекты:

  • Задача Гаусса
  • Закон Гаусса
  • Интеграл вероятности Гаусса
  • Интерполяционная формула Гаусса
  • Квадратурная формула Гаусса
  • Распределение Гаусса-Лапласа
  • Гауссово кольцо
  • Гауссово число
  • Гауссовский процесс
  • Гауссовы логарифмы
  • Алгоритм Гаусса (вычисления даты пасхи)
  • Дискриминанты Гаусса
  • Гауссова кривизна
  • Лента Гаусса
  • Метод Гаусса (решения систем линейных уравнений)
  • Метод Гаусса - Жордана
  • Метод Гаусса - Зейделя
  • Нормальное или Гауссово распределение
  • Прямая Гаусса
  • Пушка Гаусса
  • Ряд Гаусса
  • Теорема Гаусса - Ванцеля
  • Фильтр Гаусса
  • Формула Гаусса - Бонне

По материалам статьи «Карл Гаусс» книги Д. Самина «100 великих учёных», книги Э.Т. Белл «Творцы математики» и Математического энциклопедического словаря.

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*



Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе


Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым. Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.
Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса. У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет. Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать. В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом. Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.



Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. В связи с тем, что вершины правильного многоугольника из N сторон задаются решением уравнения (что численно равно . Гаусс обнаружил, что при n = 17 уравнение факторизуется таким образом, что правильный 17-сторонний многоугольник может быть построен только по линейке и циркуля. Это был совершенно новый результат, греческие геометры не подозревали об этом, и открытие вызвало небольшую сенсацию - новости об этом даже были опубликованы в городской газете. Этот успех, который пришел, когда ему едва исполнилось девятнадцать, заставил его принять решение изучать математику.


Но то, что сделало его знаменитым, было два совершенно разных явления в 1801 году. Первым было издание его книги под названием «Арифметические рассуждения», которая полностью переписала теорию чисел и привела к тому, что она(теория чисел) стала, и до сих пор является, одним из центральных предметов математики. Она включает в себя теорию уравнений вида x ^ n - 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой. Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.


Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия. Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова. Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти. Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной. Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.


В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.


Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году. У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса. У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера. Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию. Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида . Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп - пример.


Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.


Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности. Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги. Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.



Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia


В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.


И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим. Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти - настолько это было спорно в то время. И он много работал над так называемыми эллиптическими функциями - вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них. Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.


Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного. С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований. Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.


Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.


Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.


Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв. Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными - или просто интересными -, чем те, о которых мы знали.



Неевклидова геометрия //

Карл Гаусс краткая биография немецкого математика, механика, физика, астронома и геодезиста изложены в этой статье.

Карл Гаусс биография кратко

Карл Фридрих Гаусс появился на свет 30 апреля 1777 года в бедной семье. Его родители были необразованными, но у мальчика с детства проявились признаки гениальности. Об этом говорит написанный им труд «Арифметические исследования», который он закончил в 1798 году. В возрасте 21-го года книга увидела мир, и его способности настолько поразили герцога Брауншвейгского, что тот отправил юношу в Карлов коллегиум учиться. Здесь он обучался до 1795 года, а после перевелся в Геттингский университет, который окончил в 1798 году. Уже в студенческие годы он доказал и опровергнул большое количество теорем.

1796 год стал самым удачным для него. В марте Карл Гаусс открыл правила построения семнадцатиугольника, усовершенствовал модулярную арифметику и упростил манипуляции в теории чисел. В апреле ученый доказал закон взаимности квадратичных вычетов. Через месяц уже предложил другим математикам свою теорему простых чисел, а в июле сделал очередное открытие – всякое положительное целое число может выражаться суммой не больше 3-ех треугольных чисел.

В 1799 году Карл Гаусс заочно защитил научную диссертацию. В 1807 году он получил должность профессора астрономии, а также директора астрономической обсерватории Геттингена.

Математик Гаусс был замкнутым человеком. Эрик Темпл Белл, который изучал его биографию, считает, что если бы Гаусс опубликовал все свои исследования и открытия в полном объеме и вовремя, то могло бы прославиться еще с полдюжины математиков. А так им пришлось потратить львиную долю времени, чтобы узнать, каким образом ученый получил те или другие данные. Ведь он редко публиковал методы, его всегда интересовал только результат. Выдающийся математик, и неподражаемая личность - это все Карл Фридрих Гаусс.

Ранние годы

Будущий математик Гаусс родился 30.04.1777 г. Это, конечно, странное явление, но выдающиеся люди чаще всего рождаются в бедных семьях. Так случилось и в этот раз. Его дедушка был обычным крестьянином, а отец работал в герцогстве Брауншвейг садовником, каменщиком или водопроводчиком. Родители узнали, что их ребенок вундеркинд, когда малышу исполнилось два года. Спустя год Карл уже умеет считать, писать и читать.

В школе его способности заметил учитель, когда дал задание подсчитать сумму чисел от 1 до 100. Гауссу быстро удалось понять, что все крайние числа в паре составляют 101, и за считанные секунды он решил это уравнение, умножив 101 на 50.

Юному математику несказанно повезло с учителем. Тот помогал ему во всем, даже похлопотал за то, чтобы начинающему дарованию выплачивали стипендию. С ее помощью Карл сумел окончить колледж (1795 год).

Студенческие годы

После колледжа Гаусс учится в Геттингенском университете. Этот период жизни биографы обозначают как самый плодотворный. В это время ему удалось доказать, что начертить правильный семнадцатиугольник, используя лишь циркуль, представляется возможным. Он уверяет: можно нарисовать не только семнадцатиугольник, но и другие правильные многоугольники, пользуясь только циркулем и линейкой.

В университете Гаусс начинает вести специальную тетрадь, куда заносит все записи, которые касаются его исследований. Большинство из них были скрыты от глаз общественности. Для друзей он всегда повторял, что не сможет опубликовать исследование или формулу, в которых не уверен на 100%. По этой причине большинство из его идей были открыты другими математиками спустя 30 лет.

«Арифметические исследования»

Вместе с окончанием университета математик Гаусс закончил свой выдающийся труд «Арифметические исследования» (1798), но его напечатали лишь спустя два года.

Это обширное сочинение определило дальнейшее развитие математики (в частности, алгебры и высшей арифметики). Основная часть работы сосредоточена на описании абиогенеза квадратичных форм. Биографы уверяют, что именно с него начинаются открытия Гаусса в математике. Ведь он был первым математиком, у кого получилось вычислять дроби и переводить их в функции.

Также в книге можно отыскать полную парадигму равенств деления круга. Гаусс умело применяет эту теорию, пытаясь решить проблему начертания многоугольников при помощи линейки и циркуля. Доказывая эту вероятность, Карл Гаусс (математик) вводит ряд чисел, которые называют числами Гаусса (3, 5, 17, 257, 65337). Это значит, что при помощи простых канцелярских предметов можно построить 3-угольник, 5-угольник, 17-угольник и т.д. А вот 7-угольник построить не получится, ведь 7 не является «числом Гаусса». К «своим» числа математик также относит двойки, что умноженные на любую степень его ряда чисел (2 3 , 2 5 и т.д.)

Этот результат можно назвать «чистой теоремой существования». Как уже было сказано вначале, Гаусс любил публиковать итоговые результаты, но никогда не указывал методы. Так же и в этом случае: математик утверждает, что построить вполне реально, вот только не уточняет, как именно это сделать.

Астрономия и царица наук

в 1799 году Карл Гаусс (математик) получает титул приват-доцента Брауншвейнского университета. Спустя два года ему предоставляют место в Петербургской Академии наук, где он выступает в качестве корреспондента. Он все еще продолжает изучать теорию чисел, но круг его интересов расширяется после открытия небольшой планеты. Гаусс пытается вычислить и указать ее точное местонахождение. Многие задаются вопросом, как называлась планета по вычислениям математика Гаусса. Однако немногим известно, что Церера - не единственная планета, с которой работал ученый.

В 1801 году впервые было обнаружено новое небесное тело. Это случилось неожиданно и внезапно, точно так же неожиданно планета была утеряна. Гаусс попытался обнаружить ее, применяя математические методы, и, как ни странно, она была именно там, куда указал ученный.

Астрономией ученый занимается более двух десятилетий. Всемирную известность получает метод Гаусса (математика, которому принадлежит множество открытий) для определения орбиты с помощью трех наблюдений. Три наблюдения - это место, в котором располагается планета в разный период времени. С помощью этих показателей была вновь найдена Церера. Точно таким же образом обнаружили еще одну планету. С 1802 года на вопрос, как называется планета, обнаруженная математиком Гаусса, можно было отвечать: "Паллада". Забегая немного вперед, стоит отметить, что в 1923 году именем известного математика назвали крупный астероид, вращающийся вокруг Марса. Гауссия, или астероид 1001, - это официально признанная планета математика Гаусса.

Это были первые исследования в области астрономии. Возможно, созерцание звездного неба стало причиной того, что человек, увлеченный числами, принимает решение обзавестись семьей. В 1805 году берет в жены Иоганну Остгоф. В этом союзе у пары рождается трое детей, но младший сын умирает в младенчестве.

В 1806 году скончался герцог, который покровительствовал математику. Страны Европы наперебой начинают приглашать Гаусса к себе. С 1807 года и до последних своих дней Гаусс возглавляет кафедру в Геттингенском университете.

В 1809 году умирает первая жена математика, в этом же году Гаусс издает свое новое творение - книгу под названием «Парадигма перемещения небесных тел». Методы для вычисления орбит планет, что изложены в этом труде, актуальны и сегодня (правда, с небольшими поправками).

Главная теорема алгебры

Начало ХІХ века Германия встретила в состоянии анархии и упадка. Эти годы были тяжелыми для математика, но он продолжает жить дальше. В 1810 году Гаусс второй раз связывает себя узами брака - с Минной Вальдек. В этом союзе у него появляется еще трое детей: Тереза, Вильгельм и Ойген. Также 1810 год был ознаменован получением престижной премии и золотой медали.

Гаусс продолжает свою работу в областях астрономии и математики, исследуя все больше и больше неизвестных составляющих этих наук. Его первая публикация, посвященная основной теореме алгебры, датируется 1815 годом. Главная идея заключается в следующем: число корней многочлена прямопропорциональна его степени. Позже высказывание приобрело несколько иной вид: любое число в степени, не равной нолю, априори имеет как минимум один корень.

Впервые он доказал это еще в 1799 году, но не был доволен своей работой, поэтому публикация вышла в свет спустя 16 лет, с некоторыми поправками, дополнениями и вычислениями.

Неевклидова теория

Согласно данным, в 1818 году Гауссу первому удалось построить базу для неевклидовой геометрии, теоремы которой были бы возможны в реальности. Неевклидовая геометрия представляет собой область науки, отличимой от евклидовой. Основная особенность евклидовой геометрии - в наличии аксиом и теорем, которые не требуют подтверждений. В своей книге «Начала» Евклид вывел утверждения, которые должны приниматься без доказательств, ведь они не могут быть изменены. Гаусс был первым, кому удалось доказать, что теории Евклида не всегда могут восприниматься без обоснований, так как в определенных случаях они не имеют прочной базы доказательств, которая удовлетворяет всем требованиям эксперимента. Так появилась неевклидова геометрия. Конечно, основные геометрические системы были открыты Лобачевским и Риманом, но метод Гаусса - математика, умеющего смотреть вглубь и находить истину, - положил начало этому разделу геометрии.

Геодезия

В 1818 году правительство Ганновера решает, что назрела необходимость измерить королевство, и это задание получил Карл Фридрих Гаусс. Открытия в математике на этом не закончились, а лишь приобрели новый оттенок. Он разрабатывает необходимые для выполнения задания вычислительные комбинации. В их число вошла гауссова методика «малых квадратов», которая подняла геодезию на новый уровень.

Ему пришлось составлять карты и организовывать съемку местности. Это позволило приобрести новые знания и поставить новые эксперименты, поэтому в 1821 году он начинает писать работу, посвященную геодезии. Этот труд Гаусса опубликовали в 1827, под названием «Общий анализ неровных плоскостей». В основу этой работы были положены засады внутренней геометрии. Математик считал, что необходимо рассматривать предметы, которые находятся на поверхности, как свойства самой поверхности, обращая внимание на длину кривых, игнорируя при этом данные объемлющего пространства. Несколько позже эта теория была дополнена трудами Б. Римана и А. Александрова.

Благодаря этому труду в научных кругах начало появляться понятие «гауссова кривизна» (определяет меру искривления плоскости в определенной точке). Начинает свое существование дифференциальная геометрия. И чтобы результаты наблюдений были достоверными, Карл Фридрих Гаусс (математик) выводит новые методы получения величин с высоким уровнем вероятности.

Механика

В 1824 году Гаусс был заочно включен в состав членов Петербургской Академии наук. На этом его достижения не заканчиваются, он все так же упорно занимается математикой и презентует новое открытие: «целые числа Гаусса». Под ними подразумевают числа, имеющие мнимую и вещественную часть, которые являются целыми числами. По сути, своими свойствами гауссовские числа напоминают обычные целые, но те небольшие отличительные характеристики позволяют доказать биквадратичный закон взаимности.

В любое время он был неподражаем. Гаусс - математик, открытия которого так тесно переплетены с жизнью, - в 1829 году внес новые коррективы даже в механику. В это время вышел его небольшой труд «О новом универсальном принципе механики». В нем Гаусс доказывает, что принцип малого воздействия, можно по праву считать новой парадигмой механики. Ученный уверяет, что этот принцип можно применять ко всем механическим системам, которые связаны между собой.

Физика

С 1831 года Гаусс начинает страдать от тяжелой бессонницы. Болезнь проявилась после смерти второй супруги. Он ищет утешения в новых исследованиях и знакомствах. Так, благодаря его приглашению в Геттинген приехал В. Вебер. С молодой талантливой личностью Гаусс быстро находит общий язык. Они оба увлечены наукой, и жажду знаний приходится унимать, обмениваясь своими наработками, догадками и опытом. Эти энтузиасты быстро принимаются за дело, посвящая свое время исследованию электромагнетизма.

Гаусс, математик, биография которого имеет большую научную ценность, в 1832 году создал абсолютные единицы, которыми и сегодня пользуются в физике. Он выделял три основные позиции: время, вес и расстояние (длина). Наряду с этим открытием в 1833 году, благодаря совместным исследованиям с физиком Вебером, Гауссу удалось изобрести электромагнитный телеграф.

1839 год ознаменован выходом еще одного сочинения - «Об общем абиогенезе сил тяготения и отталкивания, что действуют прямопропорционально расстоянию». На страницах подробно описан знаменитый закон Гаусса (еще известный как теорема Гаусса-Остроградского, или просто Этот закон является одним из основных в электродинамике. Он определяет связь между электрическим потоком и суммой заряда поверхности, делимые на электрическую постоянную.

В этом же году Гаусс освоил русский язык. Он направляет письма в Петербург с просьбой выслать ему русские книги и журналы, особенно желал он ознакомиться с произведением «Капитанская дочка». Этот факт биографии доказывает, что, помимо способностей к вычислению, у Гаусса было множество других интересов и увлечений.

Просто человек

Гаусс никогда не спешил публиковаться. Он долго и кропотливо проверял каждую свою работу. Для математика все имело значение: начиная от правильности формулы и заканчивая изяществом и простотой слога. Он любил повторять, что его работы - как только что построенный дом. Владельцу показывают только конечный результат работы, а не остатки леса, которые раньше были на месте жилого помещения. Также и с его работами: Гаусс был уверен, что никому не стоит показывать черновые наброски исследования, только готовые данные, теории, формулы.

Гаусс всегда проявлял живой интерес к наукам, но особенно его интересовала математика, которую он считал «царицей всех наук». И природа не обделила его умом и талантами. Даже находясь в преклонном возрасте, он, по обычаю, проводил большую часть сложных вычислений в уме. Математик никогда заранее не распространялся о своих работах. Как и каждый человек, он боялся, что его не поймут современники. В одном из своих писем Карл говорит о том, что устал вечно балансировать на грани: с одной стороны, он с удовольствием поддержит науку, но, с другой, ему не хотелось ворошить «осиное гнездо непонятливых».

Всю свою жизнь Гаусс провел в Геттингене, только один раз ему удалось побывать в Берлине на научной конференции. Он мог длительное время проводить исследования, опыты, вычисления или измерения, но очень не любил читать лекции. Этот процесс он считал лишь досадной необходимостью, но если у него в группе появлялись талантливые ученики, он не жалел для них ни времени, ни сил и долгие годы поддерживал переписку обсуждая важные научные вопросы.

Карл Фридрих Гаусс, математик, фото, которого размещены в этой статье, был поистине удивительным человеком. Выдающимися знаниями мог похвастаться не только в области математики, но и с иностранными языками «дружил». Свободно разговаривал на латыни, английском и французском, освоил даже русский. Математик читал не только научные мемуары, но и обычную художественную литературу. Особенно ему нравились произведения Диккенса, Свифта и Вальтера Скотта. После того как его младшие сыновья эмигрировали в США, Гаусс начал интересоваться американскими писателями. Со временем пристрастился к датским, шведским, итальянским и испанским книгам. Все произведения математик непременно читал в оригинале.

Гаусс занимал весьма консервативную позицию в общественной жизни. С ранних лет он ощущал зависимость от людей, наделенных властью. Даже когда в 1837 году в университете начался протест против короля, который урезал профессорам содержание, Карл не стал вмешиваться.

Последние годы

В 1849 год Гаусс отмечает 50-летие присвоения докторской степени. К нему приехали и это обрадовало его намного больше, чем присвоение очередной награды. В последние годы своей жизни уже много болел Карл Гаусс. Математику было сложно передвигаться, но ясность и острота разума от этого не пострадали.

Незадолго до смерти здоровье Гаусса ухудшилось. Врачи диагностировали болезнь сердца и нервное перенапряжение. Лекарства практически не помогали.

Математик Гаусс умер 23 февраля 1855 года, в возрасте семидесяти восьми лет. похоронили в Геттингене и, согласно его последней воле, выгравировали на надгробной плите правильный семнадцатиугольник. Позже его портреты напечатают на почтовых марках и денежных купюрах, страна навсегда запомнит своего лучшего мыслителя.

Таким был Карл Фридрих Гаусс - странным, умным и увлеченным. И если спросят, как называется планета математика Гаусса, можно не спеша ответить: «Вычисления!», ведь именно им он посвятил всю свою жизнь.