Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .

ПРИЗНАКИ ДЕЛИМОСТИ чисел - простейшие критерии (правила), позволяющие судить о делимости (без остатка) одних натуральных чисел на другие. Решение вопроса о делимости чисел признаки делимости сводят к действиям над небольшими числами, обычно выполняемым в уме.
Так как основанием общепринятой системы счисления является 10, то наиболее простыми и распространенными являются признаки делимости на делители чисел трех видов: 10 k , 10 k - 1, 10 k + 1 .
Первый вид - признаки делимости на делители числа 10 k , для делимости любого целого числа N на любой целый делитель q числа 10 k необходимо и достаточно, чтобы последняя k-циферная грань (к-циферное окончание) числа N делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 = 10 (I 1), 10 2 = 100 (I 2) и 10 3 = 1000 (I 3):
I 1 . На 2, 5 и 10 - одноциферное окончание (последняя цифра) числа должно делиться соответственно на 2, 5 и 10. Например, число 80 110 делится на 2, 5 и 10, так как последняя цифра 0 этого числа делится на 2, 5 и 10; число 37 835 делится на 5, но не делится на 2 и 10, так как последняя цифра 5 этого числа делится на 5. но не делится на 2 и 10.

I 2 . На 2, 4, 5, 10, 20, 25, 50 и 100-двуциферное окончание числа должно делиться соответственно на 2, 4, 5, 10, 20, 25, 50 и 100. Например, число 7 840 700 делится на 2, 4, 5, 10, 20, 25, 50 и 100, так как двуциферное окончание 00 этого числа делится на 2, 4, 5, 10, 20, 25, 50 и 100; число 10 831 750 делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100, так как двуциферное окончание 50 этого числа делится на 2, 5, 10, 25 и 50, но не делится на 4, 20 и 100.

I 3 . На 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000 - трехциферное окончание числа должно делиться соответственно на 2,4,5,8,10, 20, 25, 40, 50, 100, 125, 200, 250, 500 и 1000. Например, число 675 081 000 делится на все перечисленные в этом признаке числа, так как на каждое из них делится трехциферное окончание 000 заданного числа; число 51 184 032 делится на 2, 4 и 8 и не делится на остальные, так как трехциферное окончание 032 заданного числа делится только на 2, 4 и 8 и не делится на остальные.

Второй вид - признаки делимости на делители числа 10 k - 1: для делимости любого целого числа N на любой целый делительq числа 10 k - 1 необходимо и достаточно, чтобы сумма k-циферных граней числа N делилась на q. В частности (при к=1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 - 1 = 9 (II 1), 10 2 - 1=99 (II 2) и 10 3 - 1 = 999 (II 3):
II 1 . На 3 и 9 -сумма цифр (одноциферных граней) числа должна делиться соответственно на 3 и 9. Например, число 510 887 250 делится на 3 и 9, так как сумма цифр 5+1+0+8+8+7+2+5+0=36 (и 3+6=9) этого числа делится на 3 и 9; число 4 712 586 делится на 3, но не делится на 9, так как сумма цифр 4+7+1+2+5+8+6=33 (и 3+3=6) этого числа делится на 3, но не делится на 9.

II 2 . На 3, 9, 11, 33 и 99 - сумма двуциферных граней числа должна делиться соответственно на 3, 9, 11, 33 и 99. Например, число 396 198 297 делится на 3, 9, 11, 33 и 99, так как сумма двуциферных граней 3+96+19+ +82+97=297 (и 2+97=99) делится на 3, 9,11, 33 и 99; число 7 265 286 303 делится на 3, 11 и 33, но не делится на 9 и 99, так как сумма двуциферных граней 72+65+28+63+03=231 (и 2+31=33) этого числа делится на 3, 11 и 33 и не делится на 9 и 99.

II 3 . На 3, 9, 27, 37, 111, 333 и 999 - сумма трехциферных граней числа должна делиться соответственно на 3, 9, 27, 37, 111, 333 и 999. Например, число 354 645 871 128 делится на все перечисленные в этом признаке числа, так как на каждое из них делится сумма трехциферных граней 354+645+ +871 + 128=1998 (и 1 + 998 = 999) этого числа.

Третий вид - признаки делимости на делители числа 10 k + 1: для делимости любого целого числа N на любой целый делитель q числа 10 k + 1 необходимо и достаточно, чтобы разность между суммой k-циферных граней, стоящих в N на четных местах, и суммой k-циферных граней, стоящих в N на нечетных местах, делилась на q. В частности (при к = 1, 2 и 3), получаем следующие признаки делимости на делители чисел 10 1 + 1 =11 (III 1), 10 2 + 1 = 101 (III 2) и 10 3 +1 = 1001 (III 3).

III 1 . На 11 - разность между суммой цифр (одноциферных граней), стоящих на четных местах, и суммой цифр (одноциферных граней), стоящих на нечетных местах, должна делиться на 11. Например, число 876 583 598 делится на 11, так как разность 8 - 7+6 - 5+8 - 3+5 - 9+8=11 (и 1 - 1=0) между суммой цифр, стоящих на четных местах, и суммой цифр, стоящих на нечетных местах, делится на 11.

III 2 . На 101 - разность между суммой двуциферных граней, стоящих в числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, должна делиться на 101. Например, число 8 130 197 делится на 101, так как разность 8-13+01-97 = 101 (и 1-01=0) между суммой двуциферных граней, стоящих в этом числе на четных местах, и суммой двуциферных граней, стоящих на нечетных местах, делится на 101.

III 3 . На 7, 11, 13, 77, 91, 143 и 1001 - разность между суммой трехциферных граней, стоящих в числе на четных местах, и суммой трехциферных граней, стоящих на нечетных местах, должна делиться соответственно на 7, 11, 13, 77, 91, 143 и 1001. Например, число 539 693 385 делится на 7, 11 и 77, но не делится на 13, 91, 143 и 1001, так как 539 - 693+385=231 делится на 7, 11 и 77 и не делится на 13, 91, 143 и 1001.

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Правила деления на числа от 1 до 10, а также на 11 и 25 были выведены, чтобы упростить процесс деления натуральных чисел. Те из них, которые оканчиваются на 2, на 4, на 6, на 8, на 0 считаются четными.

Что же такое признаки делимости?

По сути это алгоритм, который позволяет быстро определить, будет ли число делиться на то, которое задано заранее. В случае, когда признак делимости дает возможность выяснить еще и остаток от деления, его называют признаком равноостаточности.

Признак делимости на цифру 2

Число можно разделить на два, если последняя его цифра четная или ноль. В других случаях разделить не удастся.

Например:

52 734 делится на 2, потому как его последняя цифра 4 - то есть четная. 7 693 не делится на цифру 2, так как 3 - нечетная. 1 240 делится, потому что последняя цифра ноль.

Признаки делимости на 3

Цифре 3 кратны только те числа, у которых сумма делится на 3

Пример:

17 814 можно разделить на цифру 3, потому что общая сумма его цифр равна 21 и на 3 делится.

Признак делимости на цифру 4

Число можно разделить на 4, если последние две его цифры ноли или могут образовать число, кратное 4. Во всех других случаях разделить не получится.

Примеры:

31 800 можно разделить на 4, потому как в конце него два ноля. 4 846 854 не делится на 4 из-за того, что последние две цифры образуют число 54, а оно на 4 не делится. 16 604 поддается делению на 4, потому что последние две цифры 04 образуют число 4, которое делится на 4.

Признак делимости на цифру 5

5 кратны числа, в которых последняя цифра ноль или пять. Все другие - не делятся.

Пример:

245 кратно 5, потому что последняя цифра 5. 774 не кратно 5 из-за того, что последняя цифра четыре.

Признак делимости на цифру 6

Число можно разделить на 6, если его можно одновременно разделить на 2 и 3. Во всех других случаях - не делится.

Например:

216 можно разделить на 6, потому что оно кратно и двум и трем.

Признак делимости на 7

Кратно 7 число в том случае, если при вычитании последней удвоенной цифры из этого числа, но без нее (без последней цифры) получилось значение, которое можно поделить на 7.

Например, 637 кратно 7, потому что 63-(2·7)=63-14=49. 49 можно разделить на.

Признак делимости на цифру 8

Похож на признак делимости на цифру 4. Число можно разделить на 8, если три (а не две, как в случае с четверкой) последние цифры нули или могут образовать число, кратное 8. Во всех других случаях - не делится.

Примеры:

456 000 можно разделить на 8, потому как в конце него три нуля. 160 003 не получится разделить на 8, потому что три последние цифры образуют число 4, которое не кратно 8. 111 640 кратно 8, потому что последние три цифры образуют число 640, которое можно поделить на 8.

К сведению: можно назвать такие же признаки и для совершения деления на числа 16, 32, 64 и так далее. Но на практике они значения не имеют.

Признак делимости на 9

9-ке кратны те числа, сумму цифр которых можно разделить на 9.

Например:

Число 111 499 на 9 не делится, потому что сумму цифр (25) на 9 не разделить. Число 51 633 можно разделить на 9, потому что его сумма цифр (18) 9-ти кратна.

Признаки делимости на 10, на 100 и на 1000

На 10 можно разделить те числа, последняя цифра у которых 0, на 100 -те, у которых последние две цифры ноли, на 1000 - те, у которых последние три цифры ноли.

Примеры:

4500 можно поделить на 10 и 100. 778 000 кратно и 10, и 100, и 1000.

Теперь вы знаете, какие признаки делимости чисел существуют. Успешных вам вычислений и не забывайте о главном: все эти правила даны для упрощения математических расчетов.